refineable_advection_diffusion_elements.cc
Go to the documentation of this file.
1// LIC// ====================================================================
2// LIC// This file forms part of oomph-lib, the object-oriented,
3// LIC// multi-physics finite-element library, available
4// LIC// at http://www.oomph-lib.org.
5// LIC//
6// LIC// Copyright (C) 2006-2025 Matthias Heil and Andrew Hazel
7// LIC//
8// LIC// This library is free software; you can redistribute it and/or
9// LIC// modify it under the terms of the GNU Lesser General Public
10// LIC// License as published by the Free Software Foundation; either
11// LIC// version 2.1 of the License, or (at your option) any later version.
12// LIC//
13// LIC// This library is distributed in the hope that it will be useful,
14// LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16// LIC// Lesser General Public License for more details.
17// LIC//
18// LIC// You should have received a copy of the GNU Lesser General Public
19// LIC// License along with this library; if not, write to the Free Software
20// LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21// LIC// 02110-1301 USA.
22// LIC//
23// LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24// LIC//
25// LIC//====================================================================
27
28namespace oomph
29{
30 //==========================================================================
31 /// Add the element's contribution to the elemental residual vector
32 /// and/or elemental jacobian matrix.
33 /// This function overloads the standard version so that the possible
34 /// presence of hanging nodes is taken into account.
35 //=========================================================================
36 template<unsigned DIM>
39 Vector<double>& residuals,
40 DenseMatrix<double>& jacobian,
41 DenseMatrix<double>& mass_matrix,
42 unsigned flag)
43 {
44 // Find out how many nodes there are in the element
45 unsigned n_node = nnode();
46
47 // Get the nodal index at which the unknown is stored
48 unsigned u_nodal_index = this->u_index_adv_diff();
49
50 // Set up memory for the shape and test functions
51 Shape psi(n_node), test(n_node);
52 DShape dpsidx(n_node, DIM), dtestdx(n_node, DIM);
53
54 // Set the value of n_intpt
55 unsigned n_intpt = integral_pt()->nweight();
56
57 // Set the Vector to hold local coordinates
58 Vector<double> s(DIM);
59
60 // Get Peclet number
61 double peclet = this->pe();
62
63 // Get the Peclet multiplied by the Strouhal number
64 double peclet_st = this->pe_st();
65
66 // Integers used to store the local equation number and local unknown
67 // indices for the residuals and jacobians
68 int local_eqn = 0, local_unknown = 0;
69
70 // Local storage for pointers to hang_info objects
71 HangInfo *hang_info_pt = 0, *hang_info2_pt = 0;
72
73 // Local variable to determine the ALE stuff
74 bool ALE_is_disabled_flag = this->ALE_is_disabled;
75
76 // Loop over the integration points
77 for (unsigned ipt = 0; ipt < n_intpt; ipt++)
78 {
79 // Assign values of s
80 for (unsigned i = 0; i < DIM; i++) s[i] = integral_pt()->knot(ipt, i);
81
82 // Get the integral weight
83 double w = integral_pt()->weight(ipt);
84
85 // Call the derivatives of the shape and test functions
86 double J = this->dshape_and_dtest_eulerian_at_knot_adv_diff(
87 ipt, psi, dpsidx, test, dtestdx);
88
89 // Premultiply the weights and the Jacobian
90 double W = w * J;
91
92 // Calculate local values of the function, initialise to zero
93 double dudt = 0.0;
94 double interpolated_u = 0.0;
95
96 // These need to be a Vector to be ANSI C++, initialise to zero
97 Vector<double> interpolated_x(DIM, 0.0);
98 Vector<double> interpolated_dudx(DIM, 0.0);
99 Vector<double> mesh_velocity(DIM, 0.0);
100
101 // Calculate function value and derivatives:
102 //-----------------------------------------
103
104 // Loop over nodes
105 for (unsigned l = 0; l < n_node; l++)
106 {
107 // Get the value at the node
108 double u_value = this->nodal_value(l, u_nodal_index);
109 interpolated_u += u_value * psi(l);
110 dudt += this->du_dt_adv_diff(l) * psi(l);
111 // Loop over directions
112 for (unsigned j = 0; j < DIM; j++)
113 {
114 interpolated_x[j] += nodal_position(l, j) * psi(l);
115 interpolated_dudx[j] += u_value * dpsidx(l, j);
116 }
117 }
118
119 // Get the mesh velocity, if required
120 if (!ALE_is_disabled_flag)
121 {
122 for (unsigned l = 0; l < n_node; l++)
123 {
124 // Loop over directions
125 for (unsigned j = 0; j < DIM; j++)
126 {
127 mesh_velocity[j] += dnodal_position_dt(l, j) * psi(l);
128 }
129 }
130 }
131
132
133 // Get body force
134 double source;
135 this->get_source_adv_diff(ipt, interpolated_x, source);
136
137
138 // Get wind
139 //--------
140 Vector<double> wind(DIM);
141 this->get_wind_adv_diff(ipt, s, interpolated_x, wind);
142
143 // Assemble residuals and Jacobian
144 //================================
145
146 // Loop over the nodes for the test functions
147 for (unsigned l = 0; l < n_node; l++)
148 {
149 // Local variables to store the number of master nodes and
150 // the weight associated with the shape function if the node is hanging
151 unsigned n_master = 1;
152 double hang_weight = 1.0;
153 // Local bool (is the node hanging)
154 bool is_node_hanging = this->node_pt(l)->is_hanging();
155
156 // If the node is hanging, get the number of master nodes
157 if (is_node_hanging)
158 {
159 hang_info_pt = this->node_pt(l)->hanging_pt();
160 n_master = hang_info_pt->nmaster();
161 }
162 // Otherwise there is just one master node, the node itself
163 else
164 {
165 n_master = 1;
166 }
167
168 // Loop over the number of master nodes
169 for (unsigned m = 0; m < n_master; m++)
170 {
171 // Get the local equation number and hang_weight
172 // If the node is hanging
173 if (is_node_hanging)
174 {
175 // Read out the local equation from the master node
176 local_eqn = this->local_hang_eqn(hang_info_pt->master_node_pt(m),
177 u_nodal_index);
178 // Read out the weight from the master node
179 hang_weight = hang_info_pt->master_weight(m);
180 }
181 // If the node is not hanging
182 else
183 {
184 // The local equation number comes from the node itself
185 local_eqn = this->nodal_local_eqn(l, u_nodal_index);
186 // The hang weight is one
187 hang_weight = 1.0;
188 }
189
190 // If the nodal equation is not a boundary conditino
191 if (local_eqn >= 0)
192 {
193 // Add du/dt and body force/source term here
194 residuals[local_eqn] -=
195 (peclet_st * dudt + source) * test(l) * W * hang_weight;
196
197 // The Mesh velocity and Advection--Diffusion bit
198 for (unsigned k = 0; k < DIM; k++)
199 {
200 // Terms that multiply the test function
201 double tmp = peclet * wind[k];
202 // If the mesh is moving need to subtract the mesh velocity
203 if (!ALE_is_disabled_flag) tmp -= peclet_st * mesh_velocity[k];
204 // Now combine the terms into the residual
205 residuals[local_eqn] -= interpolated_dudx[k] *
206 (tmp * test(l) + dtestdx(l, k)) * W *
207 hang_weight;
208 }
209
210 // Calculate the Jacobian
211 if (flag)
212 {
213 // Local variables to store the number of master nodes
214 // and the weights associated with each hanging node
215 unsigned n_master2 = 1;
216 double hang_weight2 = 1.0;
217 // Loop over the nodes for the variables
218 for (unsigned l2 = 0; l2 < n_node; l2++)
219 {
220 // Local bool (is the node hanging)
221 bool is_node2_hanging = this->node_pt(l2)->is_hanging();
222 // If the node is hanging, get the number of master nodes
223 if (is_node2_hanging)
224 {
225 hang_info2_pt = this->node_pt(l2)->hanging_pt();
226 n_master2 = hang_info2_pt->nmaster();
227 }
228 // Otherwise there is one master node, the node itself
229 else
230 {
231 n_master2 = 1;
232 }
233
234 // Loop over the master nodes
235 for (unsigned m2 = 0; m2 < n_master2; m2++)
236 {
237 // Get the local unknown and weight
238 // If the node is hanging
239 if (is_node2_hanging)
240 {
241 // Read out the local unknown from the master node
242 local_unknown = this->local_hang_eqn(
243 hang_info2_pt->master_node_pt(m2), u_nodal_index);
244 // Read out the hanging weight from the master node
245 hang_weight2 = hang_info2_pt->master_weight(m2);
246 }
247 // If the node is not hanging
248 else
249 {
250 // The local unknown number comes from the node
251 local_unknown = this->nodal_local_eqn(l2, u_nodal_index);
252 // The hang weight is one
253 hang_weight2 = 1.0;
254 }
255
256 // If the unknown is not pinned
257 if (local_unknown >= 0)
258 {
259 // Add contribution to Elemental Matrix
260 // Mass matrix du/dt term
261 jacobian(local_eqn, local_unknown) -=
262 peclet_st * test(l) * psi(l2) *
263 this->node_pt(l2)->time_stepper_pt()->weight(1, 0) * W *
264 hang_weight * hang_weight2;
265
266 // Add contribution to mass matrix
267 if (flag == 2)
268 {
269 mass_matrix(local_eqn, local_unknown) +=
270 peclet_st * test(l) * psi(l2) * W * hang_weight *
271 hang_weight2;
272 }
273
274 // Add contribution to Elemental Matrix
275 for (unsigned k = 0; k < DIM; k++)
276 {
277 // Terms that multiply the test function
278 double tmp = peclet * wind[k];
279 // If the mesh is moving, subtract the mesh velocity
280 if (!ALE_is_disabled_flag)
281 {
282 tmp -= peclet_st * mesh_velocity[k];
283 }
284 // Construct the jacobian term
285 jacobian(local_eqn, local_unknown) -=
286 dpsidx(l2, k) * (tmp * test(l) + dtestdx(l, k)) * W *
287 hang_weight * hang_weight2;
288 }
289 }
290 } // End of loop over master nodes
291 } // End of loop over nodes
292 } // End of Jacobian calculation
293
294 } // End of non-zero equation
295
296 } // End of loop over the master nodes for residual
297 } // End of loop over nodes
298
299 } // End of loop over integration points
300 }
301
302
303 //====================================================================
304 // Force build of templates
305 //====================================================================
309
313
314} // namespace oomph
static char t char * s
Definition cfortran.h:568
cstr elem_len * i
Definition cfortran.h:603
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition shape.h:278
Class for dense matrices, storing all the values of the matrix as a pointer to a pointer with assorte...
Definition matrices.h:386
Class that contains data for hanging nodes.
Definition nodes.h:742
Node *const & master_node_pt(const unsigned &i) const
Return a pointer to the i-th master node.
Definition nodes.h:791
unsigned nmaster() const
Return the number of master nodes.
Definition nodes.h:785
double const & master_weight(const unsigned &i) const
Return weight for dofs on i-th master node.
Definition nodes.h:808
void fill_in_generic_residual_contribution_adv_diff(Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix, unsigned flag)
Add the element's contribution to the elemental residual vector and/or Jacobian matrix flag=1: comput...
Refineable version of QAdvectionDiffusionElement. Inherit from the standard QAdvectionDiffusionElemen...
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition shape.h:76
A slight extension to the standard template vector class so that we can include "graceful" array rang...
Definition Vector.h:58
DRAIG: Change all instances of (SPATIAL_DIM) to (DIM-1).