navier_stokes_flux_control_elements.h
Go to the documentation of this file.
1// LIC// ====================================================================
2// LIC// This file forms part of oomph-lib, the object-oriented,
3// LIC// multi-physics finite-element library, available
4// LIC// at http://www.oomph-lib.org.
5// LIC//
6// LIC// Copyright (C) 2006-2025 Matthias Heil and Andrew Hazel
7// LIC//
8// LIC// This library is free software; you can redistribute it and/or
9// LIC// modify it under the terms of the GNU Lesser General Public
10// LIC// License as published by the Free Software Foundation; either
11// LIC// version 2.1 of the License, or (at your option) any later version.
12// LIC//
13// LIC// This library is distributed in the hope that it will be useful,
14// LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16// LIC// Lesser General Public License for more details.
17// LIC//
18// LIC// You should have received a copy of the GNU Lesser General Public
19// LIC// License along with this library; if not, write to the Free Software
20// LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21// LIC// 02110-1301 USA.
22// LIC//
23// LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24// LIC//
25// LIC//====================================================================
26// Include guard to prevent multiple inclusions of the header
27#ifndef OOMPH_NAVIER_STOKES_FLUX_CONTROL_ELEMENTS
28#define OOMPH_NAVIER_STOKES_FLUX_CONTROL_ELEMENTS
29
30// Config header
31#ifdef HAVE_CONFIG_H
32#include <oomph-lib-config.h>
33#endif
34
35// OOMPH-LIB headers
36#include "generic/nodes.h"
37#include "../navier_stokes/navier_stokes_surface_power_elements.h"
38
39namespace oomph
40{
41 //////////////////////////////////////////////////////////////////////////
42 //////////////////////////////////////////////////////////////////////////
43 //////////////////////////////////////////////////////////////////////////
44
45
46 //======================================================================
47 /// A template free base class for an element to imposes an applied
48 /// boundary pressure to the Navier-Stokes equations in order to
49 /// control a volume flux when used in conjunction with a
50 /// NetFluxControlElement or
51 /// NetFluxControlElementForWomersleyPressureControl).
52 //======================================================================
54 : public virtual GeneralisedElement
55 {
56 public:
57 /// Empty constructor
59
60 /// Empty virtual destructor
62
63 /// Pure virtual function to calculate integral of the volume flux
64 virtual double get_volume_flux() = 0;
65
66 /// Function adds to the external data the Data object whose
67 /// single value is the pressure applied by the element
68 void add_pressure_data(Data* pressure_data_pt)
69 {
70 Pressure_data_id = add_external_data(pressure_data_pt);
71 }
72
73 protected:
74 /// Access function gives id of external Data object whose
75 /// single value is the pressure applied by the element
76 unsigned& pressure_data_id()
77 {
78 return Pressure_data_id;
79 }
80
81 private:
82 /// Id of external Data object whose single value is the
83 /// pressure applied by the elements
85 };
86
87
88 //////////////////////////////////////////////////////////////////////////
89 //////////////////////////////////////////////////////////////////////////
90 //////////////////////////////////////////////////////////////////////////
91
92
93 //======================================================================
94 /// A class for an element that controls the net fluid flux across a
95 /// boundary by the imposition of an unknown applied pressure to the
96 /// Navier-Stokes equations. This element is used with a mesh of
97 /// NavierStokesFluxControlElement elements which are attached
98 /// to the boundary.
99 /// Note: fill_in_contribution_to_jacobian() does not calculate
100 /// Jacobian contributions for this element as they are calculated by
101 /// NavierStokesFluxControlElement::fill_in_contribution_to_jacobian(...)
102 //======================================================================
104 {
105 public:
106 /// Constructor takes a mesh of
107 /// TemplateFreeNavierStokesFluxControlElementBase elements
108 /// that impose the pressure to control the flux, plus a pointer to
109 /// the double which contains the desired flux value
114 {
115 // Construct Pressure_data_pt
116 Pressure_data_pt = new Data(1);
117
118 // Add the new Data to internal Data for this element
120
121 // There's no need to add the external data for this element since
122 // this elements Jacobian contributions are calculated by the
123 // NavierStokesFluxControlElements
124
125 // Loop over elements in the Flux_control_mesh to add this element's
126 // Data to the external Data in the elements in the flux control mesh
127 unsigned n_el = Flux_control_mesh_pt->nelement();
128 for (unsigned e = 0; e < n_el; e++)
129 {
130 // Get pointer to the element
132
133 // Perform cast to TemplateFreeNavierStokesFluxControlElementBase
134 // pointer
137
138 flux_el_pt->add_pressure_data(Pressure_data_pt);
139 }
140
141 // Default value for Dof_number_for_unknown, indiating that it's
142 // uninitialised
144 }
145
146
147 /// Empty Destructor - Data gets deleted automatically
149
150 /// Broken copy constructor
152
153 /// Broken assignment operator
154 // Commented out broken assignment operator because this can lead to a
155 // conflict warning when used in the virtual inheritence hierarchy.
156 // Essentially the compiler doesn't realise that two separate
157 // implementations of the broken function are the same and so, quite
158 // rightly, it shouts.
159 /*void operator=(const NetFluxControlElement&) = delete;*/
160
161 /// Spatial dimension of the problem
162 unsigned dim() const
163 {
164 return Dim;
165 }
166
167 /// Function to return a pointer to the Data object whose
168 /// single value is the pressure applied by the
169 /// NavierStokesFluxControlElement elements
171 {
172 return Pressure_data_pt;
173 }
174
175
176 /// Add the element's contribution to its residual vector:
177 /// i.e. the flux constraint.
183
184 /// This function returns the residuals, but adds nothing to the
185 /// Jacobian as this element's Jacobian contributions are calculated by
186 /// the NavierStokesFluxControlElements which impose the traction
187 /// used to control the flux.
194
195
196 /// The number of "DOF types" that degrees of freedom in this element
197 /// are sub-divided into - it's set to Dof_number_for_unknown+1
198 /// because it's expected this element is added to a fluid mesh
199 /// containing navier stokes elements
200 unsigned ndof_types() const
201 {
202#ifdef PARANOID
204 {
205 std::ostringstream error_message;
206 error_message << "Dof_number_for_unknown hasn't been set yet!\n"
207 << "Please do so using the dof_number_for_unknown()\n"
208 << "access function\n";
209 throw OomphLibError(error_message.str(),
212 }
213#endif
214 return Dof_number_for_unknown + 1;
215 }
216
217 /// Function to set / get the nodal value of the "DOF type" to which
218 /// the degree of freedom in this element (the pressure that enforces
219 /// the required volume flux!) is added to.
220 /// This should be set to the Navier-Stokes pressure DOF type
221 /// (usually the dimension of the problem, for example, in 3D, the DOF types
222 /// for single-physics Navier-Stokes elements are usually
223 /// labelled 0, 1, 2, 3 for u, v and w
224 /// velocities and pressure respectively. It is important to note that this
225 /// is dimension dependent, so should not be hard coded in!! In
226 /// particularly, this should not simply be set to the dimension of the
227 /// problem if there is further splitting of the velocity DOF types) if this
228 /// element is added to a fluid mesh containing Navier-Stokes elements.
230 {
232 }
233
234 /// Create a list of pairs for all unknowns in this element,
235 /// so that the first entry in each pair contains the global equation
236 /// number of the unknown, while the second one contains the number
237 /// of the "DOF type" that this unknown is associated with.
238 /// (Function can obviously only be called if the equation numbering
239 /// scheme has been set up.) The single degree of freedom is given the
240 /// DOF type number of Dof_number_for_unknown since it's expected this
241 /// unknown is added to the Navier-Stokes pressure DOF block (it is also
242 /// assumed that the user has set the Dof_number_for_unknown variable to
243 /// the velocity DOF type using the function dof_number_for_unknown()).
245 std::list<std::pair<unsigned long, unsigned>>& dof_lookup_list) const
246 {
247#ifdef PARANOID
249 {
250 std::ostringstream error_message;
251 error_message << "Dof_number_for_unknown hasn't been set yet!\n"
252 << "Please do so using the dof_number_for_unknown()\n"
253 << "access function\n";
254 throw OomphLibError(error_message.str(),
257 }
258#endif
259
260 // pair to store dof lookup prior to being added to list
261 std::pair<unsigned, unsigned> dof_lookup;
262
263 dof_lookup.first = this->eqn_number(0);
264 dof_lookup.second = Dof_number_for_unknown;
265
266 // add to list
267 dof_lookup_list.push_front(dof_lookup);
268 }
269
270 protected:
271 /// This function returns the residuals for the
272 /// flux control master element.
275 {
276 // Initialise volume flux
277 double volume_flux = 0.0;
278
279 // Loop over elements in Flux_control_mesh_pt and calculate flux
280 unsigned n_el = Flux_control_mesh_pt->nelement();
281 for (unsigned e = 0; e < n_el; e++)
282 {
283 // Get a pointer to the element
285
286 // Cast to NavierStokesFluxControlElement
290
291#ifdef PARANOID
292 if (flux_control_el_pt == 0)
293 {
294 throw OomphLibError("Element must be used with a mesh of "
295 "NavierStokesFluxControlElements",
298 }
299#endif
300
301 // Add the elemental volume flux
302 volume_flux += flux_control_el_pt->get_volume_flux();
303 }
304
306 }
307
308
309 private:
310 /// Data object whose single value is the pressure
311 /// applied by the elements in the Flux_control_mesh_pt
313
314 /// Mesh of elements which impose the pressure which controls
315 /// the net flux
317
318 /// Pointer to the value that stores the prescribed flux
320
321 /// The id number of the "DOF type" to which the degree
322 /// of freedom in this element is added to. This should be set to the
323 /// number id of the Navier-Stokes pressure DOF block (which is dimension
324 /// dependent!) if this element is added to a fluid mesh
325 /// containing navier stokes elements
327
328 /// spatial dim of NS system
329 unsigned Dim;
330 };
331
332
333 //////////////////////////////////////////////////////////////////////////
334 //////////////////////////////////////////////////////////////////////////
335 //////////////////////////////////////////////////////////////////////////
336
337
338 //======================================================================
339 /// A class of element to impose an applied boundary pressure to
340 /// Navier-Stokes elements to control to control a volume flux. A mesh of
341 /// these elements are used in conjunction with a NetFluxControlElement.
342 /// The template arguement ELEMENT is a Navier-Stokes "bulk" element.
343 ///
344 /// Note: This element calculates Jacobian contributions for both itself
345 /// and also for the NetFluxControlElement with respect to its unknowns.
346 //======================================================================
347 template<class ELEMENT>
350 public virtual NavierStokesSurfacePowerElement<ELEMENT>
351 {
352 public:
353 /// Constructor, which takes a "bulk" element and face index
355 FiniteElement* const& element_pt,
356 const int& face_index,
357 const bool& called_from_refineable_constructor = false)
358 : NavierStokesSurfacePowerElement<ELEMENT>(element_pt, face_index)
359 {
360#ifdef PARANOID
361 {
362 // Check that the element is not a refineable 3d element
364 {
365 ELEMENT* elem_pt = new ELEMENT;
366 // If it's three-d
367 if (elem_pt->dim() == 3)
368 {
369 // Is it refineable
370 if (dynamic_cast<RefineableElement*>(elem_pt))
371 {
372 // Throw Error
373 std::ostringstream error_message;
374 error_message
375 << "This element does not work properly with refineable bulk \n"
376 << "elements in 3D. Please use the refineable version\n"
377 << "instead.\n";
378 throw OomphLibError(error_message.str(),
381 }
382 }
383 }
384 }
385#endif
386
387 // Set the dimension from the dimension of the first node (since Dim is
388 // private in the parent class)
389 Dim = this->node_pt(0)->ndim();
390 }
391
392 /// Destructor should not delete anything
394
395 /// This function returns just the residuals
397 {
398 // Call the generic residuals function using a dummy matrix argument
401 }
402
403 /// This function returns the residuals and the Jacobian
404 /// including the Jacobian contribution from the flux control
405 /// master element with respect to dof in this
406 /// element
408 DenseMatrix<double>& jacobian)
409 {
410 // Call the generic routine
412 residuals, jacobian, 1);
413 }
414
415 /// Function to get the integral of the volume flux
420
421 protected:
422 /// Access function that returns the local equation numbers
423 /// for velocity components.
424 /// u_local_eqn(n,i) = local equation number or < 0 if pinned.
425 /// The default is to asssume that n is the local node number
426 /// and the i-th velocity component is the i-th unknown stored at the node.
427 virtual inline int u_local_eqn(const unsigned& n, const unsigned& i)
428 {
429 return this->nodal_local_eqn(n, i);
430 }
431
432 /// Function to compute the shape and test functions and to return
433 /// the Jacobian of mapping
434 inline double shape_and_test_at_knot(const unsigned& ipt,
435 Shape& psi,
436 Shape& test) const
437 {
438 // Find number of nodes
439 unsigned n_node = this->nnode();
440 // Calculate the shape functions
441 this->shape_at_knot(ipt, psi);
442 // Set the test functions to be the same as the shape functions
443 for (unsigned i = 0; i < n_node; i++)
444 {
445 test[i] = psi[i];
446 }
447 // Return the value of the jacobian
448 return this->J_eulerian_at_knot(ipt);
449 }
450
451
452 /// This function returns the residuals for the traction function
453 /// flag=1(or 0): do (or don't) compute the Jacobian as well.
454 /// This function also calculates the Jacobian contribution for the
455 /// NetFluxControlElement
457 Vector<double>& residuals, DenseMatrix<double>& jacobian, unsigned flag)
458 {
459 // Find out how many nodes there are
460 unsigned n_node = this->nnode();
461
462 // Set up memory for the shape and test functions
464
465 // Set the value of n_intpt
466 unsigned n_intpt = this->integral_pt()->nweight();
467
468 // Integers to store local equation numbers
469 int local_eqn = 0;
470
471 // Get the pressure at the outflow
472 double pressure = this->external_data_pt(pressure_data_id())->value(0);
473
474 // Loop over the integration points
475 for (unsigned ipt = 0; ipt < n_intpt; ipt++)
476 {
477 // Get the integral weight
478 double w = this->integral_pt()->weight(ipt);
479
480 // Find the shape and test functions and return the Jacobian
481 // of the mapping
483
484 // Premultiply the weights and the Jacobian
485 double W = w * J;
486
487 // Get the outer unit normal
490
491 // Calculate the traction
492 Vector<double> traction(Dim);
493 for (unsigned i = 0; i < Dim; i++)
494 {
495 traction[i] = -pressure * unit_normal[i];
496 }
497
498 // Loop over the test functions
499 for (unsigned l = 0; l < n_node; l++)
500 {
501 // Loop over the velocity components
502 for (unsigned i = 0; i < Dim; i++)
503 {
505
506 /*IF it's not a boundary condition*/
507 if (local_eqn >= 0)
508 {
509 // Add the user-defined traction terms
510 residuals[local_eqn] += traction[i] * testf[l] * W;
511
512 // Calculate the Jacobian if required. It is assumed
513 // that traction DOES NOT depend upon velocities
514 // or pressures in the Navier Stokes elements, but
515 // depend in the Data value which holds the
516 // pressure.
517 if (flag)
518 {
519 // Get equation number of the pressure data unknown
520 int local_unknown =
522
523 // IF it's not a boundary condition
524 if (local_unknown >= 0)
525 {
526 // Add to Jacobian for this element
527 double jac_contribution = -unit_normal[i] * testf[l] * W;
529
530 // Add to Jacobian for master element
532 }
533 }
534 }
535 } // End of loop over dimension
536 } // End of loop over shape functions
537 }
538 }
539
540 protected:
541 /// The highest dimension of the problem
542 unsigned Dim;
543 };
544
545
546 /////////////////////////////////////////////////////////////////////////
547 /////////////////////////////////////////////////////////////////////////
548 /////////////////////////////////////////////////////////////////////////
549
550
551 //======================================================================
552 /// A class of element to impose an applied boundary pressure to
553 /// Navier-Stokes elements to control to control a volume flux. A mesh of
554 /// these elements are used in conjunction with a NetFluxControlElement.
555 /// The template arguement ELEMENT is a Navier-Stokes "bulk" element.
556 ///
557 /// Note: This element calculates Jacobian contributions for both itself
558 /// and also for the NetFluxControlElement with respect to its unknowns.
559 ///
560 /// THIS IS THE REFINEABLE VERSION.
561 //======================================================================
562 template<class ELEMENT>
564 : public virtual NavierStokesFluxControlElement<ELEMENT>,
566 {
567 public:
568 /// Constructor, which takes a "bulk" element and the face index
570 const int& face_index)
571 : NavierStokesSurfacePowerElement<ELEMENT>(element_pt, face_index),
572 // we're calling this from the constructor of the refineable version.
573 NavierStokesFluxControlElement<ELEMENT>(element_pt, face_index, true)
574 {
575 }
576
577 /// Destructor should not delete anything
579
580
581 /// Number of continuously interpolated values are the
582 /// same as those in the bulk element.
584 {
585 return dynamic_cast<ELEMENT*>(this->bulk_element_pt())
587 }
588
589 /// This function returns just the residuals
591 {
592 // Call the generic residuals function using a dummy matrix argument
595 }
596
597 /// This function returns the residuals and the Jacobian
598 /// including the Jacobian contribution from the flux control
599 /// master element with respect to dof in this
600 /// element
602 DenseMatrix<double>& jacobian)
603 {
604 // Call the generic routine
606 residuals, jacobian, 1);
607 }
608
609 protected:
610 /// This function returns the residuals for the traction function
611 /// flag=1(or 0): do (or don't) compute the Jacobian as well.
612 /// This function also calculates the Jacobian contribution for the
613 /// NetFluxControlElement
615 Vector<double>& residuals, DenseMatrix<double>& jacobian, unsigned flag)
616 {
617 // Get the indices at which the velocity components are stored
618 unsigned u_nodal_index[this->Dim];
619 for (unsigned i = 0; i < this->Dim; i++)
620 {
621 u_nodal_index[i] =
622 dynamic_cast<ELEMENT*>(this->bulk_element_pt())->u_index_nst(i);
623 }
624
625 // Pointer to hang info object
627
628 // Find out how many nodes there are
629 unsigned n_node = this->nnode();
630
631 // Set up memory for the shape and test functions
633
634 // Set the value of n_intpt
635 unsigned n_intpt = this->integral_pt()->nweight();
636
637 // Integers to store local equation numbers
638 int local_eqn = 0;
639
640 // Get the pressure at the outflow
641 double pressure =
642 this->external_data_pt(this->pressure_data_id())->value(0);
643
644 // Loop over the integration points
645 for (unsigned ipt = 0; ipt < n_intpt; ipt++)
646 {
647 // Get the integral weight
648 double w = this->integral_pt()->weight(ipt);
649
650 // Find the shape and test functions and return the Jacobian
651 // of the mapping
652 double J = this->shape_and_test_at_knot(ipt, psif, testf);
653
654 // Premultiply the weights and the Jacobian
655 double W = w * J;
656
657 // Get the outer unit normal
658 Vector<double> unit_normal(this->Dim);
660
661 // Calculate the traction
662 Vector<double> traction(this->Dim);
663 for (unsigned i = 0; i < this->Dim; i++)
664 {
665 traction[i] = -pressure * unit_normal[i];
666 }
667
668
669 // Number of master nodes and storage for the weight of the shape
670 // function
671 unsigned n_master = 1;
672 double hang_weight = 1.0;
673
674 // Loop over the nodes for the test functions/equations
675 //----------------------------------------------------
676 for (unsigned l = 0; l < n_node; l++)
677 {
678 // Local boolean to indicate whether the node is hanging
679 bool is_node_hanging = this->node_pt(l)->is_hanging();
680
681 // If the node is hanging
682 if (is_node_hanging)
683 {
684 hang_info_pt = this->node_pt(l)->hanging_pt();
685
686 // Read out number of master nodes from hanging data
687 n_master = hang_info_pt->nmaster();
688 }
689 // Otherwise the node is its own master
690 else
691 {
692 n_master = 1;
693 }
694
695 // Loop over the master nodes
696 for (unsigned m = 0; m < n_master; m++)
697 {
698 // Loop over velocity components for equations
699 for (unsigned i = 0; i < this->Dim; i++)
700 {
701 // Get the equation number
702 // If the node is hanging
703 if (is_node_hanging)
704 {
705 // Get the equation number from the master node
707 hang_info_pt->master_node_pt(m), u_nodal_index[i]);
708 // Get the hang weight from the master node
709 hang_weight = hang_info_pt->master_weight(m);
710 }
711 // If the node is not hanging
712 else
713 {
714 // Local equation number
716
717 // Node contributes with full weight
718 hang_weight = 1.0;
719 }
720
721 // If it's not a boundary condition...
722 if (local_eqn >= 0)
723 {
724 // Add the user-defined traction terms
726 traction[i] * testf[l] * W * hang_weight;
727
728 // Calculate the Jacobian if required. It is assumed
729 // that traction DOES NOT depend upon velocities
730 // or pressures in the Navier Stokes elements, but
731 // depend in the Data value which holds the
732 // pressure.
733 if (flag)
734 {
735 // Get equation number of the pressure data unknown
736 int local_unknown =
737 this->external_local_eqn(this->pressure_data_id(), 0);
738
739 // IF it's not a boundary condition
740 if (local_unknown >= 0)
741 {
742 // Add to Jacobian for this element
743 double jac_contribution =
744 -unit_normal[i] * testf[l] * W * hang_weight;
746
747 // Add to Jacobian for master element
749 }
750 }
751 }
752 } // End of loop over dimension
753 } // End of loop over master nodes
754 } // End of loop over nodes
755 }
756 }
757 };
758
759
760} // namespace oomph
761
762#endif
e
Definition cfortran.h:571
cstr elem_len * i
Definition cfortran.h:603
A class that represents a collection of data; each Data object may contain many different individual ...
Definition nodes.h:86
double value(const unsigned &i) const
Return i-th stored value. This function is not virtual so that it can be inlined. This means that if ...
Definition nodes.h:293
int & face_index()
Index of the face (a number that uniquely identifies the face in the element)
Definition elements.h:4630
void outer_unit_normal(const Vector< double > &s, Vector< double > &unit_normal) const
Compute outer unit normal at the specified local coordinate.
Definition elements.cc:6037
FiniteElement *& bulk_element_pt()
Pointer to higher-dimensional "bulk" element.
Definition elements.h:4739
double J_eulerian_at_knot(const unsigned &ipt) const
Return the Jacobian of the mapping from local to global coordinates at the ipt-th integration point O...
Definition elements.cc:5359
A general Finite Element class.
Definition elements.h:1317
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition elements.h:1967
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Return the local equation number corresponding to the i-th value at the n-th local node.
Definition elements.h:1436
unsigned dim() const
Return the spatial dimension of the element, i.e. the number of local coordinates required to paramet...
Definition elements.h:2615
unsigned nnode() const
Return the number of nodes.
Definition elements.h:2214
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition elements.h:2179
virtual void shape_at_knot(const unsigned &ipt, Shape &psi) const
Return the geometric shape function at the ipt-th integration point.
Definition elements.cc:3250
A Generalised Element class.
Definition elements.h:73
Data *& external_data_pt(const unsigned &i)
Return a pointer to i-th external data object.
Definition elements.h:642
unsigned add_internal_data(Data *const &data_pt, const bool &fd=true)
Add a (pointer to an) internal data object to the element and return the index required to obtain it ...
Definition elements.cc:67
unsigned long eqn_number(const unsigned &ieqn_local) const
Return the global equation number corresponding to the ieqn_local-th local equation number.
Definition elements.h:691
static DenseMatrix< double > Dummy_matrix
Empty dense matrix used as a dummy argument to combined residual and jacobian functions in the case w...
Definition elements.h:227
int external_local_eqn(const unsigned &i, const unsigned &j)
Return the local equation number corresponding to the j-th value stored at the i-th external data.
Definition elements.h:311
unsigned add_external_data(Data *const &data_pt, const bool &fd=true)
Add a (pointer to an) external data object to the element and return its index (i....
Definition elements.cc:312
Class that contains data for hanging nodes.
Definition nodes.h:742
Node *const & master_node_pt(const unsigned &i) const
Return a pointer to the i-th master node.
Definition nodes.h:791
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
A general mesh class.
Definition mesh.h:67
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition mesh.h:452
unsigned long nelement() const
Return number of elements in the mesh.
Definition mesh.h:598
A class of element to impose an applied boundary pressure to Navier-Stokes elements to control to con...
double get_volume_flux()
Function to get the integral of the volume flux.
double shape_and_test_at_knot(const unsigned &ipt, Shape &psi, Shape &test) const
Function to compute the shape and test functions and to return the Jacobian of mapping.
~NavierStokesFluxControlElement()
Destructor should not delete anything.
void fill_in_generic_residual_contribution_fluid_traction(Vector< double > &residuals, DenseMatrix< double > &jacobian, unsigned flag)
This function returns the residuals for the traction function flag=1(or 0): do (or don't) compute the...
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
This function returns the residuals and the Jacobian including the Jacobian contribution from the flu...
unsigned Dim
The highest dimension of the problem.
NavierStokesFluxControlElement(FiniteElement *const &element_pt, const int &face_index, const bool &called_from_refineable_constructor=false)
Constructor, which takes a "bulk" element and face index.
virtual int u_local_eqn(const unsigned &n, const unsigned &i)
Access function that returns the local equation numbers for velocity components. u_local_eqn(n,...
void fill_in_contribution_to_residuals(Vector< double > &residuals)
This function returns just the residuals.
A class of elements that allow the determination of the power input and various other fluxes over the...
A class for an element that controls the net fluid flux across a boundary by the imposition of an unk...
void fill_in_contribution_to_residuals(Vector< double > &residuals)
Add the element's contribution to its residual vector: i.e. the flux constraint.
unsigned ndof_types() const
The number of "DOF types" that degrees of freedom in this element are sub-divided into - it's set to ...
void fill_in_generic_residual_contribution_flux_control(Vector< double > &residuals)
This function returns the residuals for the flux control master element.
Mesh * Flux_control_mesh_pt
Mesh of elements which impose the pressure which controls the net flux.
Data * pressure_data_pt() const
Function to return a pointer to the Data object whose single value is the pressure applied by the Nav...
~NetFluxControlElement()
Empty Destructor - Data gets deleted automatically.
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
This function returns the residuals, but adds nothing to the Jacobian as this element's Jacobian cont...
unsigned Dof_number_for_unknown
The id number of the "DOF type" to which the degree of freedom in this element is added to....
unsigned & dof_number_for_unknown()
Function to set / get the nodal value of the "DOF type" to which the degree of freedom in this elemen...
NetFluxControlElement(const NetFluxControlElement &dummy)=delete
Broken copy constructor.
NetFluxControlElement(Mesh *flux_control_mesh_pt, double *prescribed_flux_value_pt)
Constructor takes a mesh of TemplateFreeNavierStokesFluxControlElementBase elements that impose the p...
void get_dof_numbers_for_unknowns(std::list< std::pair< unsigned long, unsigned > > &dof_lookup_list) const
Create a list of pairs for all unknowns in this element, so that the first entry in each pair contain...
unsigned dim() const
Broken assignment operator.
Data * Pressure_data_pt
Data object whose single value is the pressure applied by the elements in the Flux_control_mesh_pt.
double * Prescribed_flux_value_pt
Pointer to the value that stores the prescribed flux.
unsigned ndim() const
Return (Eulerian) spatial dimension of the node.
Definition nodes.h:1054
bool is_hanging() const
Test whether the node is geometrically hanging.
Definition nodes.h:1285
HangInfo *const & hanging_pt() const
Return pointer to hanging node data (this refers to the geometric hanging node status) (const version...
Definition nodes.h:1228
A base class for elements that can have hanging nodes but are not refineable as such....
An OomphLibError object which should be thrown when an run-time error is encountered....
RefineableElements are FiniteElements that may be subdivided into children to provide a better local ...
int local_hang_eqn(Node *const &node_pt, const unsigned &i)
Access function that returns the local equation number for the hanging node variables (values stored ...
A class of element to impose an applied boundary pressure to Navier-Stokes elements to control to con...
unsigned ncont_interpolated_values() const
Number of continuously interpolated values are the same as those in the bulk element.
void fill_in_contribution_to_jacobian(Vector< double > &residuals, DenseMatrix< double > &jacobian)
This function returns the residuals and the Jacobian including the Jacobian contribution from the flu...
void refineable_fill_in_generic_residual_contribution_fluid_traction(Vector< double > &residuals, DenseMatrix< double > &jacobian, unsigned flag)
This function returns the residuals for the traction function flag=1(or 0): do (or don't) compute the...
~RefineableNavierStokesFluxControlElement()
Destructor should not delete anything.
void fill_in_contribution_to_residuals(Vector< double > &residuals)
This function returns just the residuals.
RefineableNavierStokesFluxControlElement(FiniteElement *const &element_pt, const int &face_index)
Constructor, which takes a "bulk" element and the face index.
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition shape.h:76
TAdvectionDiffusionReactionElement<NREAGENT,DIM,NNODE_1D> elements are isoparametric triangular DIM-d...
A template free base class for an element to imposes an applied boundary pressure to the Navier-Stoke...
unsigned & pressure_data_id()
Access function gives id of external Data object whose single value is the pressure applied by the el...
virtual double get_volume_flux()=0
Pure virtual function to calculate integral of the volume flux.
void add_pressure_data(Data *pressure_data_pt)
Function adds to the external data the Data object whose single value is the pressure applied by the ...
unsigned Pressure_data_id
Id of external Data object whose single value is the pressure applied by the elements.
DRAIG: Change all instances of (SPATIAL_DIM) to (DIM-1).