matrices.cc
Go to the documentation of this file.
1// LIC// ====================================================================
2// LIC// This file forms part of oomph-lib, the object-oriented,
3// LIC// multi-physics finite-element library, available
4// LIC// at http://www.oomph-lib.org.
5// LIC//
6// LIC// Copyright (C) 2006-2025 Matthias Heil and Andrew Hazel
7// LIC//
8// LIC// This library is free software; you can redistribute it and/or
9// LIC// modify it under the terms of the GNU Lesser General Public
10// LIC// License as published by the Free Software Foundation; either
11// LIC// version 2.1 of the License, or (at your option) any later version.
12// LIC//
13// LIC// This library is distributed in the hope that it will be useful,
14// LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16// LIC// Lesser General Public License for more details.
17// LIC//
18// LIC// You should have received a copy of the GNU Lesser General Public
19// LIC// License along with this library; if not, write to the Free Software
20// LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21// LIC// 02110-1301 USA.
22// LIC//
23// LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24// LIC//
25// LIC//====================================================================
26// Non-inline member functions for the matrix classes
27
28#ifdef OOMPH_HAS_MPI
29#include "mpi.h"
30#endif
31
32#include <cstring>
33
34#include <set>
35#include <map>
36
37// #include <valgrind/callgrind.h>
38
39// oomph-lib headers
40#include "matrices.h"
41#include "linear_solver.h"
42
43
44namespace oomph
45{
46 //============================================================================
47 /// Complete LU solve (overwrites RHS with solution). This is the
48 /// generic version which should not need to be over-written.
49 //============================================================================
51 {
52#ifdef PARANOID
53 if (Linear_solver_pt == 0)
54 {
55 throw OomphLibError("Linear_solver_pt not set in matrix",
58 }
59#endif
60
61 // Copy rhs vector into local storage so it doesn't get overwritten
62 // if the linear solver decides to initialise the solution vector, say,
63 // which it's quite entitled to do!
65
66 // Use the linear algebra interface to the linear solver
68 }
69
70 //============================================================================
71 /// Complete LU solve (Nothing gets overwritten!). This generic
72 /// version should never need to be overwritten
73 //============================================================================
75 {
76#ifdef PARANOID
77 if (Linear_solver_pt == 0)
78 {
79 throw OomphLibError("Linear_solver_pt not set in matrix",
82 }
83#endif
84 // Use the linear algebra interface to the linear solver
86 }
87
88 //============================================================================
89 /// Complete LU solve (overwrites RHS with solution). This is the
90 /// generic version which should not need to be over-written.
91 //============================================================================
93 {
94#ifdef PARANOID
95 if (Linear_solver_pt == 0)
96 {
97 throw OomphLibError("Linear_solver_pt not set in matrix",
100 }
101#endif
102
103 // Copy rhs vector into local storage so it doesn't get overwritten
104 // if the linear solver decides to initialise the solution vector, say,
105 // which it's quite entitled to do!
107
108 // Use the linear algebra interface to the linear solver
110 }
111
112 //============================================================================
113 /// Complete LU solve (Nothing gets overwritten!). This generic
114 /// version should never need to be overwritten
115 //============================================================================
117 {
118#ifdef PARANOID
119 if (Linear_solver_pt == 0)
120 {
121 throw OomphLibError("Linear_solver_pt not set in matrix",
124 }
125#endif
126 // Use the linear algebra interface to the linear solver
128 }
129
130
131 ////////////////////////////////////////////////////////////////////////
132 ////////////////////////////////////////////////////////////////////////
133 ////////////////////////////////////////////////////////////////////////
134
135 //===============================================================
136 /// Constructor, set the default linear solver to be the DenseLU
137 /// solver
138 //===============================================================
143
144 //==============================================================
145 /// Constructor to build a square n by n matrix.
146 /// Set the default linear solver to be DenseLU
147 //==============================================================
153
154
155 //=================================================================
156 /// Constructor to build a matrix with n rows and m columns.
157 /// Set the default linear solver to be DenseLU
158 //=================================================================
160 const unsigned long& m)
161 : DenseMatrix<double>(n, m)
162 {
164 }
165
166 //=====================================================================
167 /// Constructor to build a matrix with n rows and m columns,
168 /// with initial value initial_val
169 /// Set the default linear solver to be DenseLU
170 //=====================================================================
172 const unsigned long& m,
173 const double& initial_val)
175 {
177 }
178
179 //=======================================================================
180 /// Destructor delete the default linear solver
181 //======================================================================
183 {
184 // Delete the default linear solver
186 }
187
188 //============================================================================
189 /// LU decompose a matrix, by using the default linear solver
190 /// (DenseLU)
191 //============================================================================
193 {
194 // Use the default (DenseLU) solver to ludecompose the matrix
195 static_cast<DenseLU*>(Default_linear_solver_pt)->factorise(this);
196 }
197
198
199 //============================================================================
200 /// Back substitute an LU decomposed matrix.
201 //============================================================================
203 {
204 // Use the default (DenseLU) solver to perform the backsubstitution
205 static_cast<DenseLU*>(Default_linear_solver_pt)->backsub(rhs, rhs);
206 }
207
208 //============================================================================
209 /// Back substitute an LU decomposed matrix.
210 //============================================================================
212 {
213 // Use the default (DenseLU) solver to perform the backsubstitution
214 static_cast<DenseLU*>(Default_linear_solver_pt)->backsub(rhs, rhs);
215 }
216
217
218 //============================================================================
219 /// Determine eigenvalues and eigenvectors, using
220 /// Jacobi rotations. Only for symmetric matrices. Nothing gets overwritten!
221 /// - \c eigen_vect(i,j) = j-th component of i-th eigenvector.
222 /// - \c eigen_val[i] is the i-th eigenvalue; same ordering as in eigenvectors
223 //============================================================================
226 {
227#ifdef PARANOID
228 // Check Matrix is square
229 if (N != M)
230 {
231 throw OomphLibError(
232 "This matrix is not square, the matrix MUST be square!",
235 }
236#endif
237 // Make a copy of the matrix & check that it's symmetric
238
239 // Check that the sizes of eigen_vals and eigen_vect are correct. If not
240 // correct them.
241 if (eigen_vals.size() != N)
242 {
243 eigen_vals.resize(N);
244 }
245 if (eigen_vect.ncol() != N || eigen_vect.nrow() != N)
246 {
247 eigen_vect.resize(N);
248 }
249
251 for (unsigned long i = 0; i < N; i++)
252 {
253 for (unsigned long j = 0; j < M; j++)
254 {
255#ifdef PARANOID
256 if (Matrixdata[M * i + j] != Matrixdata[M * j + i])
257 {
258 throw OomphLibError(
259 "Matrix needs to be symmetric for eigenvalues_by_jacobi()",
262 }
263#endif
264 working_matrix(i, j) = (*this)(i, j);
265 }
266 }
267
269
270 throw OomphLibError("Sorry JacobiEigenSolver::jacobi() removed because of "
271 "licencing problems.",
274
275 // // Call eigensolver
276 // unsigned long nrot;
277 // JacobiEigenSolver::jacobi(working_matrix, eigen_vals, aux_eigen_vect,
278 // nrot);
279
280 // Copy across (and transpose)
281 for (unsigned long i = 0; i < N; i++)
282 {
283 for (unsigned long j = 0; j < M; j++)
284 {
286 }
287 }
288 }
289
290
291 //============================================================================
292 /// Multiply the matrix by the vector x: soln=Ax
293 //============================================================================
295 DoubleVector& soln) const
296 {
297#ifdef PARANOID
298 // Check to see if x.size() = ncol().
299 if (x.nrow() != this->ncol())
300 {
301 std::ostringstream error_message_stream;
302 error_message_stream << "The x vector is not the right size. It is "
303 << x.nrow() << ", it should be " << this->ncol()
304 << std::endl;
308 }
309 // check that x is not distributed
310 if (x.distributed())
311 {
312 std::ostringstream error_message_stream;
314 << "The x vector cannot be distributed for DenseDoubleMatrix "
315 << "matrix-vector multiply" << std::endl;
319 }
320 // if soln is setup...
321 if (soln.built())
322 {
323 // check that soln is not distributed
324 if (soln.distributed())
325 {
326 std::ostringstream error_message_stream;
328 << "The x vector cannot be distributed for DenseDoubleMatrix "
329 << "matrix-vector multiply" << std::endl;
333 }
334 if (soln.nrow() != this->nrow())
335 {
336 std::ostringstream error_message_stream;
338 << "The soln vector is setup and therefore must have the same "
339 << "number of rows as the matrix";
343 }
344 if (*x.distribution_pt()->communicator_pt() !=
345 *soln.distribution_pt()->communicator_pt())
346 {
347 std::ostringstream error_message_stream;
349 << "The soln vector and the x vector must have the same communicator"
350 << std::endl;
354 }
355 }
356#endif
357
358 // if soln is not setup then setup the distribution
359 if (!soln.built())
360 {
362 x.distribution_pt()->communicator_pt(), this->nrow(), false);
363 soln.build(&dist, 0.0);
364 }
365
366 // Initialise the solution
367 soln.initialise(0.0);
368
369 // Multiply the matrix A, by the vector x
370 const double* x_pt = x.values_pt();
371 double* soln_pt = soln.values_pt();
372 for (unsigned long i = 0; i < N; i++)
373 {
374 for (unsigned long j = 0; j < M; j++)
375 {
376 soln_pt[i] += Matrixdata[M * i + j] * x_pt[j];
377 }
378 }
379 }
380
381
382 //=================================================================
383 /// Multiply the transposed matrix by the vector x: soln=A^T x
384 //=================================================================
386 DoubleVector& soln) const
387 {
388#ifdef PARANOID
389 // Check to see if x.size() = ncol().
390 if (x.nrow() != this->nrow())
391 {
392 std::ostringstream error_message_stream;
393 error_message_stream << "The x vector is not the right size. It is "
394 << x.nrow() << ", it should be " << this->nrow()
395 << std::endl;
399 }
400 // check that x is not distributed
401 if (x.distributed())
402 {
403 std::ostringstream error_message_stream;
405 << "The x vector cannot be distributed for DenseDoubleMatrix "
406 << "matrix-vector multiply" << std::endl;
410 }
411 // if soln is setup...
412 if (soln.built())
413 {
414 // check that soln is not distributed
415 if (soln.distributed())
416 {
417 std::ostringstream error_message_stream;
419 << "The x vector cannot be distributed for DenseDoubleMatrix "
420 << "matrix-vector multiply" << std::endl;
424 }
425 if (soln.nrow() != this->ncol())
426 {
427 std::ostringstream error_message_stream;
429 << "The soln vector is setup and therefore must have the same "
430 << "number of columns as the matrix";
434 }
435 if (*soln.distribution_pt()->communicator_pt() !=
437 {
438 std::ostringstream error_message_stream;
440 << "The soln vector and the x vector must have the same communicator"
441 << std::endl;
445 }
446 }
447#endif
448
449 // if soln is not setup then setup the distribution
450 if (!soln.built())
451 {
453 x.distribution_pt()->communicator_pt(), this->ncol(), false);
454 soln.build(dist_pt, 0.0);
455 delete dist_pt;
456 }
457
458 // Initialise the solution
459 soln.initialise(0.0);
460
461 // Matrix vector product
462 double* soln_pt = soln.values_pt();
463 const double* x_pt = x.values_pt();
464 for (unsigned long i = 0; i < N; i++)
465 {
466 for (unsigned long j = 0; j < M; j++)
467 {
468 soln_pt[j] += Matrixdata[N * i + j] * x_pt[i];
469 }
470 }
471 }
472
473
474 //=================================================================
475 /// For every row, find the maximum absolute value of the
476 /// entries in this row. Set all values that are less than alpha times
477 /// this maximum to zero and return the resulting matrix in
478 /// reduced_matrix. Note: Diagonal entries are retained regardless
479 /// of their size.
480 //=================================================================
481 void DenseDoubleMatrix::matrix_reduction(const double& alpha,
483 {
484 reduced_matrix.resize(N, M, 0.0);
485 // maximum value in a row
486 double max_row;
487
488 // Loop over rows
489 for (unsigned i = 0; i < N; i++)
490 {
491 // Initialise max value in row
492 max_row = 0.0;
493
494 // Loop over entries in columns
495 for (unsigned long j = 0; j < M; j++)
496 {
497 // Find max. value in row
498 if (std::fabs(Matrixdata[M * i + j]) > max_row)
499 {
500 max_row = std::fabs(Matrixdata[M * i + j]);
501 }
502 }
503
504 // Decide if we need to retain the entries in the row
505 for (unsigned long j = 0; j < M; j++)
506 {
507 // If we're on the diagonal or the value is sufficiently large: retain
508 // i.e. copy across.
509 if (i == j || std::fabs(Matrixdata[M * i + j]) > alpha * max_row)
510 {
511 reduced_matrix(i, j) = Matrixdata[M * i + j];
512 }
513 }
514 }
515 }
516
517
518 //=============================================================================
519 /// Function to multiply this matrix by the DenseDoubleMatrix matrix_in.
520 //=============================================================================
523 {
524#ifdef PARANOID
525 // check matrix dimensions are compatable
526 if (this->ncol() != matrix_in.nrow())
527 {
528 std::ostringstream error_message;
529 error_message
530 << "Matrix dimensions incompatable for matrix-matrix multiplication"
531 << "ncol() for first matrix:" << this->ncol()
532 << "nrow() for second matrix: " << matrix_in.nrow();
533
534 throw OomphLibError(
536 }
537#endif
538
539 // NB N is number of rows!
540 unsigned long n_row = this->nrow();
541 unsigned long m_col = matrix_in.ncol();
542
543 // resize and intialize result
544 result.resize(n_row, m_col, 0.0);
545
546 // clock_t clock1 = clock();
547
548 // do calculation
549 unsigned long n_col = this->ncol();
550 for (unsigned long k = 0; k < n_col; k++)
551 {
552 for (unsigned long i = 0; i < n_row; i++)
553 {
554 for (unsigned long j = 0; j < m_col; j++)
555 {
556 result(i, j) += Matrixdata[m_col * i + k] * matrix_in(k, j);
557 }
558 }
559 }
560 }
561
562
563 ///////////////////////////////////////////////////////////////////////////////
564 ///////////////////////////////////////////////////////////////////////////////
565 ///////////////////////////////////////////////////////////////////////////////
566
567
568 //=======================================================================
569 /// Default constructor, set the default linear solver and
570 /// matrix-matrix multiplication method.
571 //========================================================================
577
578 //========================================================================
579 /// Constructor: Pass vector of values, vector of row indices,
580 /// vector of column starts and number of rows (can be suppressed
581 /// for square matrices). Number of nonzero entries is read
582 /// off from value, so make sure the vector has been shrunk
583 /// to its correct length.
584 //=======================================================================
586 const Vector<int>& row_index,
587 const Vector<int>& column_start,
588 const unsigned long& n,
589 const unsigned long& m)
590 : CCMatrix<double>(value, row_index, column_start, n, m)
591 {
594 }
595
596 /// Destructor: delete the default linear solver
601
602
603 //===================================================================
604 /// Perform LU decomposition. Return the sign of the determinant
605 //===================================================================
607 {
608 static_cast<SuperLUSolver*>(Default_linear_solver_pt)->factorise(this);
609 }
610
611 //===================================================================
612 /// Do the backsubstitution
613 //===================================================================
615 {
616 static_cast<SuperLUSolver*>(Default_linear_solver_pt)->backsub(rhs, rhs);
617 }
618
619 //===================================================================
620 /// Multiply the matrix by the vector x
621 //===================================================================
623 {
624#ifdef PARANOID
625 // Check to see if x.size() = ncol().
626 if (x.nrow() != this->ncol())
627 {
628 std::ostringstream error_message_stream;
629 error_message_stream << "The x vector is not the right size. It is "
630 << x.nrow() << ", it should be " << this->ncol()
631 << std::endl;
635 }
636 // check that x is not distributed
637 if (x.distributed())
638 {
639 std::ostringstream error_message_stream;
641 << "The x vector cannot be distributed for CCDoubleMatrix "
642 << "matrix-vector multiply" << std::endl;
646 }
647 // if soln is setup...
648 if (soln.built())
649 {
650 // check that soln is not distributed
651 if (soln.distributed())
652 {
653 std::ostringstream error_message_stream;
655 << "The x vector cannot be distributed for CCDoubleMatrix "
656 << "matrix-vector multiply" << std::endl;
660 }
661 if (soln.nrow() != this->nrow())
662 {
663 std::ostringstream error_message_stream;
665 << "The soln vector is setup and therefore must have the same "
666 << "number of rows as the matrix";
670 }
671 if (*soln.distribution_pt()->communicator_pt() !=
673 {
674 std::ostringstream error_message_stream;
676 << "The soln vector and the x vector must have the same communicator"
677 << std::endl;
681 }
682 }
683#endif
684
685 // if soln is not setup then setup the distribution
686 if (!soln.built())
687 {
689 x.distribution_pt()->communicator_pt(), this->nrow(), false);
690 soln.build(dist_pt, 0.0);
691 delete dist_pt;
692 }
693
694 // zero
695 soln.initialise(0.0);
696
697 // multiply
698 double* soln_pt = soln.values_pt();
699 const double* x_pt = x.values_pt();
700 for (unsigned long j = 0; j < N; j++)
701 {
702 for (long k = Column_start[j]; k < Column_start[j + 1]; k++)
703 {
704 unsigned long i = Row_index[k];
705 double a_ij = Value[k];
706 soln_pt[i] += a_ij * x_pt[j];
707 }
708 }
709 }
710
711
712 //=================================================================
713 /// Multiply the transposed matrix by the vector x: soln=A^T x
714 //=================================================================
716 DoubleVector& soln) const
717 {
718#ifdef PARANOID
719 // Check to see if x.size() = ncol().
720 if (x.nrow() != this->nrow())
721 {
722 std::ostringstream error_message_stream;
723 error_message_stream << "The x vector is not the right size. It is "
724 << x.nrow() << ", it should be " << this->nrow()
725 << std::endl;
729 }
730 // check that x is not distributed
731 if (x.distributed())
732 {
733 std::ostringstream error_message_stream;
735 << "The x vector cannot be distributed for CCDoubleMatrix "
736 << "matrix-vector multiply" << std::endl;
740 }
741 // if soln is setup...
742 if (soln.built())
743 {
744 // check that soln is not distributed
745 if (soln.distributed())
746 {
747 std::ostringstream error_message_stream;
749 << "The x vector cannot be distributed for CCDoubleMatrix "
750 << "matrix-vector multiply" << std::endl;
754 }
755 if (soln.nrow() != this->ncol())
756 {
757 std::ostringstream error_message_stream;
759 << "The soln vector is setup and therefore must have the same "
760 << "number of columns as the matrix";
764 }
765 if (*soln.distribution_pt()->communicator_pt() !=
767 {
768 std::ostringstream error_message_stream;
770 << "The soln vector and the x vector must have the same communicator"
771 << std::endl;
775 }
776 }
777#endif
778
779 // if soln is not setup then setup the distribution
780 if (!soln.built())
781 {
783 x.distribution_pt()->communicator_pt(), this->ncol(), false);
784 soln.build(dist_pt, 0.0);
785 delete dist_pt;
786 }
787
788 // zero
789 soln.initialise(0.0);
790
791 // Matrix vector product
792 double* soln_pt = soln.values_pt();
793 const double* x_pt = x.values_pt();
794 for (unsigned long i = 0; i < N; i++)
795 {
796 for (long k = Column_start[i]; k < Column_start[i + 1]; k++)
797 {
798 unsigned long j = Row_index[k];
799 double a_ij = Value[k];
800 soln_pt[j] += a_ij * x_pt[i];
801 }
802 }
803 }
804
805
806 //===========================================================================
807 /// Function to multiply this matrix by the CCDoubleMatrix matrix_in
808 /// The multiplication method used can be selected using the flag
809 /// Matrix_matrix_multiply_method. By default Method 2 is used.
810 /// Method 1: First runs through this matrix and matrix_in to find the storage
811 /// requirements for result - arrays of the correct size are
812 /// then allocated before performing the calculation.
813 /// Minimises memory requirements but more costly.
814 /// Method 2: Grows storage for values and column indices of result 'on the
815 /// fly' using an array of maps. Faster but more memory
816 /// intensive.
817 /// Method 3: Grows storage for values and column indices of result 'on the
818 /// fly' using a vector of vectors. Not particularly impressive
819 /// on the platforms we tried...
820 //=============================================================================
823 {
824#ifdef PARANOID
825 // check matrix dimensions are compatible
826 if (this->ncol() != matrix_in.nrow())
827 {
828 std::ostringstream error_message;
829 error_message
830 << "Matrix dimensions incompatable for matrix-matrix multiplication"
831 << "ncol() for first matrix:" << this->ncol()
832 << "nrow() for second matrix: " << matrix_in.nrow();
833
834 throw OomphLibError(
836 }
837#endif
838
839 // NB N is number of rows!
840 unsigned long N = this->nrow();
841 unsigned long M = matrix_in.ncol();
842 unsigned long Nnz = 0;
843
844 // pointers to arrays which store result
845 int* Column_start;
846 double* Value;
847 int* Row_index;
848
849 // get pointers to matrix_in
850 const int* matrix_in_col_start = matrix_in.column_start();
851 const int* matrix_in_row_index = matrix_in.row_index();
852 const double* matrix_in_value = matrix_in.value();
853
854 // get pointers to this matrix
855 const double* this_value = this->value();
856 const int* this_col_start = this->column_start();
857 const int* this_row_index = this->row_index();
858
859 // set method
860 unsigned method = Matrix_matrix_multiply_method;
861
862 // clock_t clock1 = clock();
863
864 // METHOD 1
865 // --------
866 if (method == 1)
867 {
868 // allocate storage for column starts
869 Column_start = new int[M + 1];
870 Column_start[0] = 0;
871
872 // a set to store number of non-zero rows in each column of result
873 std::set<unsigned> rows;
874
875 // run through columns of this matrix and matrix_in to find number of
876 // non-zero entries in each column of result
877 for (unsigned long this_col = 0; this_col < M; this_col++)
878 {
879 // run through non-zeros in this_col of this matrix
880 for (int this_ptr = this_col_start[this_col];
882 this_ptr++)
883 {
884 // find row index for non-zero
886
887 // run through corresponding column in matrix_in
891 {
892 // find row index for non-zero in matrix_in and store in rows
894 }
895 }
896 // update Column_start
898
899 // wipe values in rows
900 rows.clear();
901 }
902
903 // set Nnz
904 Nnz = Column_start[M];
905
906 // allocate arrays for result
907 Value = new double[Nnz];
908 Row_index = new int[Nnz];
909
910 // set all values of Row_index to -1
911 for (unsigned long i = 0; i < Nnz; i++) Row_index[i] = -1;
912
913 // Calculate values for result - first run through columns of this matrix
914 for (unsigned long this_col = 0; this_col < M; this_col++)
915 {
916 // run through non-zeros in this_column
917 for (int this_ptr = this_col_start[this_col];
919 this_ptr++)
920 {
921 // find value of non-zero
922 double this_val = this_value[this_ptr];
923
924 // find row associated with non-zero
926
927 // run through corresponding column in matrix_in
931 {
932 // find row index for non-zero in matrix_in
934
935 // find position in result to insert value
936 for (int ptr = Column_start[this_col];
937 ptr <= Column_start[this_col + 1];
938 ptr++)
939 {
940 if (ptr == Column_start[this_col + 1])
941 {
942 // error - have passed end of column without finding
943 // correct row index
944 std::ostringstream error_message;
945 error_message << "Error inserting value in result";
946
947 throw OomphLibError(error_message.str(),
950 }
951 else if (Row_index[ptr] == -1)
952 {
953 // first entry for this row index
954 Row_index[ptr] = row;
956 break;
957 }
958 else if (Row_index[ptr] == row)
959 {
960 // row index already exists - add value
962 break;
963 }
964 }
965 }
966 }
967 }
968 }
969
970 // METHOD 2
971 // --------
972 else if (method == 2)
973 {
974 // generate array of maps to store values for result
975 std::map<int, double>* result_maps = new std::map<int, double>[M];
976
977 // run through columns of this matrix
978 for (unsigned long this_col = 0; this_col < M; this_col++)
979 {
980 // run through non-zeros in this_col
981 for (int this_ptr = this_col_start[this_col];
983 this_ptr++)
984 {
985 // find value of non-zero
986 double this_val = this_value[this_ptr];
987
988 // find row index associated with non-zero
990
991 // run through corresponding column in matrix_in
995 {
996 // find row index for non-zero in matrix_in
998
999 // insert value
1002 }
1003 }
1004 }
1005
1006 // allocate Column_start
1007 Column_start = new int[M + 1];
1008
1009 // copy across column starts
1010 Column_start[0] = 0;
1011 for (unsigned long col = 0; col < M; col++)
1012 {
1013 int size = result_maps[col].size();
1014 Column_start[col + 1] = Column_start[col] + size;
1015 }
1016
1017 // set Nnz
1018 Nnz = Column_start[M];
1019
1020 // allocate other arrays
1021 Value = new double[Nnz];
1022 Row_index = new int[Nnz];
1023
1024 // copy values and row indices
1025 for (unsigned long col = 0; col < M; col++)
1026 {
1027 unsigned ptr = Column_start[col];
1028 for (std::map<int, double>::iterator i = result_maps[col].begin();
1029 i != result_maps[col].end();
1030 i++)
1031 {
1032 Row_index[ptr] = i->first;
1033 Value[ptr] = i->second;
1034 ptr++;
1035 }
1036 }
1037
1038 // tidy up memory
1039 delete[] result_maps;
1040 }
1041
1042 // METHOD 3
1043 // --------
1044 else if (method == 3)
1045 {
1046 // vectors of vectors to store results
1047 std::vector<std::vector<int>> result_rows(N);
1048 std::vector<std::vector<double>> result_vals(N);
1049
1050 // run through the columns of this matrix
1051 for (unsigned long this_col = 0; this_col < M; this_col++)
1052 {
1053 // run through non-zeros in this_col
1054 for (int this_ptr = this_col_start[this_col];
1056 this_ptr++)
1057 {
1058 // find value of non-zero
1059 double this_val = this_value[this_ptr];
1060
1061 // find row index associated with non-zero
1063
1064 // run through corresponding column in matrix_in
1067 matrix_in_ptr++)
1068 {
1069 // find row index for non-zero in matrix_in
1071
1072 // insert value
1073 int size = result_rows[this_col].size();
1074 for (int i = 0; i <= size; i++)
1075 {
1076 if (i == size)
1077 {
1078 // first entry for this row index
1079 result_rows[this_col].push_back(row);
1080 result_vals[this_col].push_back(this_val *
1082 }
1083 else if (row == result_rows[this_col][i])
1084 {
1085 // row index already exists
1088 break;
1089 }
1090 }
1091 }
1092 }
1093 }
1094
1095 // allocate Column_start
1096 Column_start = new int[M + 1];
1097
1098 // copy across column starts
1099 Column_start[0] = 0;
1100 for (unsigned long col = 0; col < M; col++)
1101 {
1102 int size = result_rows[col].size();
1103 Column_start[col + 1] = Column_start[col] + size;
1104 }
1105
1106 // set Nnz
1107 Nnz = Column_start[M];
1108
1109 // allocate other arrays
1110 Value = new double[Nnz];
1111 Row_index = new int[Nnz];
1112
1113 // copy across values and row indices
1114 for (unsigned long col = 0; col < N; col++)
1115 {
1116 unsigned ptr = Column_start[col];
1117 unsigned n_rows = result_rows[col].size();
1118 for (unsigned i = 0; i < n_rows; i++)
1119 {
1121 Value[ptr] = result_vals[col][i];
1122 ptr++;
1123 }
1124 }
1125 }
1126
1127 // INCORRECT VALUE FOR METHOD
1128 else
1129 {
1130 std::ostringstream error_message;
1131 error_message << "Incorrect method set in matrix-matrix multiply"
1132 << "method=" << method << " not allowed";
1133
1134 throw OomphLibError(
1135 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
1136 }
1137
1138 result.build_without_copy(Value, Row_index, Column_start, Nnz, N, M);
1139 }
1140
1141
1142 //=================================================================
1143 /// For every row, find the maximum absolute value of the
1144 /// entries in this row. Set all values that are less than alpha times
1145 /// this maximum to zero and return the resulting matrix in
1146 /// reduced_matrix. Note: Diagonal entries are retained regardless
1147 /// of their size.
1148 //=================================================================
1149 void CCDoubleMatrix::matrix_reduction(const double& alpha,
1151 {
1152 // number of columns in matrix
1153 long n_coln = ncol();
1154
1155 Vector<double> max_row(nrow(), 0.0);
1156
1157 // Here's the packed format for the new matrix
1161
1162
1163 // k is counter for the number of entries in the reduced matrix
1164 unsigned k = 0;
1165
1166 // Initialise row start
1167 B_row_start[0] = 0;
1168
1169 // Loop over columns
1170 for (long i = 0; i < n_coln; i++)
1171 {
1172 // Loop over entries in columns
1173 for (long j = Column_start[i]; j < Column_start[i + 1]; j++)
1174 {
1175 // Find max. value in row
1176 if (std::fabs(Value[j]) > max_row[Row_index[j]])
1177 {
1178 max_row[Row_index[j]] = std::fabs(Value[j]);
1179 }
1180 }
1181
1182 // Decide if we need to retain the entries in the row
1183 for (long j = Column_start[i]; j < Column_start[i + 1]; j++)
1184 {
1185 // If we're on the diagonal or the value is sufficiently large: retain
1186 // i.e. copy across.
1187 if (i == Row_index[j] ||
1188 std::fabs(Value[j]) > alpha * max_row[Row_index[j]])
1189 {
1190 B_value.push_back(Value[j]);
1191 B_column_index.push_back(Row_index[j]);
1192 k++;
1193 }
1194 }
1195 // This writes the row start for the next row -- equal to
1196 // to the number of entries written so far (C++ zero-based indexing!)
1197 B_row_start.push_back(k);
1198 }
1199
1200
1201 // Build the matrix from the compressed format
1202 dynamic_cast<CCDoubleMatrix&>(reduced_matrix)
1204 }
1205
1206
1207 ///////////////////////////////////////////////////////////////////////////////
1208 ///////////////////////////////////////////////////////////////////////////////
1209 ///////////////////////////////////////////////////////////////////////////////
1210
1211 //=============================================================================
1212 /// Default constructor
1213 //=============================================================================
1215 {
1216 // set the default solver
1218
1219 // matrix not built
1220 Built = false;
1221
1222 // set the serial matrix-matrix multiply method
1223#ifdef OOMPH_HAS_TRILINOS
1224 // Serial_matrix_matrix_multiply_method = 4;
1226#else
1228#endif
1229 }
1230
1231 //=============================================================================
1232 /// Copy constructor
1233 //=============================================================================
1235 {
1236 // copy the distribution
1237 this->build_distribution(other_matrix.distribution_pt());
1238
1239 // copy coefficients
1240 const double* values_pt = other_matrix.value();
1241 const int* column_indices = other_matrix.column_index();
1242 const int* row_start = other_matrix.row_start();
1243
1244 // This is the local nnz.
1245 const unsigned nnz = other_matrix.nnz();
1246
1247 // Using number of local rows since the underlying CRMatrix is local to
1248 // each processor.
1249 const unsigned nrow_local = other_matrix.nrow_local();
1250
1251 // Storage for the (yet to be copied) data.
1252 double* my_values_pt = new double[nnz];
1253 int* my_column_indices = new int[nnz];
1254 int* my_row_start = new int[nrow_local + 1];
1255
1256 // Copying over the data.
1257 std::copy(values_pt, values_pt + nnz, my_values_pt);
1259 std::copy(row_start, row_start + nrow_local + 1, my_row_start);
1260
1261
1262 // Build without copy since we have made a deep copy of the data structure.
1263 this->build_without_copy(
1265
1266 // set the default solver
1268
1269 // matrix is built
1270 Built = true;
1271
1272 // set the serial matrix-matrix multiply method
1273#ifdef OOMPH_HAS_TRILINOS
1274 // Serial_matrix_matrix_multiply_method = 4;
1276#else
1278#endif
1279 }
1280
1281
1282 //=============================================================================
1283 /// Constructor: just stores the distribution but does not build the
1284 /// matrix
1285 //=============================================================================
1287 const LinearAlgebraDistribution* distribution_pt)
1288 {
1289 this->build_distribution(distribution_pt);
1290
1291 // set the default solver
1293
1294 // matrix not built
1295 Built = false;
1296
1297// set the serial matrix-matrix multiply method
1298#ifdef OOMPH_HAS_TRILINOS
1299 // Serial_matrix_matrix_multiply_method = 4;
1301#else
1303#endif
1304 }
1305
1306 //=============================================================================
1307 /// Constructor: Takes the distribution and the number of columns, as
1308 /// well as the vector of values, vector of column indices,vector of row
1309 /// starts.
1310 //=============================================================================
1312 const unsigned& ncol,
1313 const Vector<double>& value,
1314 const Vector<int>& column_index,
1315 const Vector<int>& row_start)
1316 {
1317 // build the compressed row matrix
1319 value, column_index, row_start, dist_pt->nrow_local(), ncol);
1320
1321 // store the Distribution
1322 this->build_distribution(dist_pt);
1323
1324 // set the linear solver
1326
1327 // set the serial matrix-matrix multiply method
1328#ifdef OOMPH_HAS_TRILINOS
1329 // Serial_matrix_matrix_multiply_method = 4;
1331#else
1333#endif
1334
1335 // matrix has been built
1336 Built = true;
1337 }
1338
1339
1340 //=============================================================================
1341 /// Destructor
1342 //=============================================================================
1349
1350 //=============================================================================
1351 /// Rebuild the matrix - assembles an empty matrix with a defined distribution
1352 //=============================================================================
1354 {
1355 this->clear();
1356 this->build_distribution(distribution_pt);
1357 }
1358
1359 //=============================================================================
1360 /// Runs through the column index vector and checks if the entries
1361 /// are arranged arbitrarily or if they follow the regular lexicographical
1362 /// of matrices. If a boolean argument is provided with the assignment
1363 /// TRUE then information on the first entry which is not in the correct
1364 /// position will also be given
1365 //=============================================================================
1367 const bool& doc_unordered_entries) const
1368 {
1369#ifdef OOMPH_HAS_MPI
1370 // We only need to produce a warning if the matrix is distributed
1371 if (this->distributed())
1372 {
1373 // Create an ostringstream object to store the warning message
1374 std::ostringstream warning_message;
1375
1376 // Create the warning messsage
1377 warning_message << "This method currently works for serial but "
1378 << "has not been implemented for use with MPI!\n";
1379
1380 // Issue the warning
1384 }
1385#endif
1386
1387 // Get the number of rows in this matrix
1388 unsigned n_rows = this->nrow();
1389
1390 // Acquire access to the value, row_start and column_index arrays from
1391 // the CR matrix. Since we do not change anything in row_start_pt we
1392 // give it the const prefix
1393 const int* column_index_pt = this->column_index();
1394 const int* row_start_pt = this->row_start();
1395
1396 // Loop over the rows of matrix
1397 for (unsigned i = 0; i < n_rows; i++)
1398 {
1399 // Calculate the number of nonzeros in the i-th row
1400 unsigned nnz_row_i = *(row_start_pt + i + 1) - *(row_start_pt + i);
1401
1402 // Get the index of the first entry in row i
1403 unsigned i_row_start = *(row_start_pt + i);
1404
1405 // Loop over the entries of the i-th row
1406 for (unsigned j = 0; j < nnz_row_i - 1; j++)
1407 {
1408 // Check if the column index of the following entry is greater than the
1409 // current entry
1410 if ((*(column_index_pt + i_row_start + j + 1)) <
1411 (*(column_index_pt + i_row_start + j)))
1412 {
1413 // If the input argument was set to TRUE we document we output
1414 // information of the first entry which is not in the correct position
1416 {
1417 // Tell the user
1418 oomph_info << "Matrix has not been correctly sorted!"
1419 << "\nOn row: " << i << "\nEntry: " << j
1420 << "\nEntry 1 = " << *(column_index_pt + i_row_start + j)
1421 << "\nEntry 2 = "
1422 << *(column_index_pt + i_row_start + j + 1) << std::endl;
1423 }
1424
1425 // It hasn't worked
1426 return false;
1427 } // if ((*(column_index_pt+i_row_start+j+1)) ...
1428 } // for (unsigned j=0;j<nnz_row_i-1;j++)
1429 } // for (unsigned i=0;i<n_rows;i++)
1430
1431 // If it gets here without a warning then the entries in each row of
1432 // the matrix are ordered by increasing column index
1433 return true;
1434 } // End of entries_are_sorted()
1435
1436 //=============================================================================
1437 /// This helper function sorts the entries in the column index vector
1438 /// and the value vector. During the construction of the matrix the entries
1439 /// were most likely assigned in an arbitrary order. As a result, it cannot
1440 /// be assumed that the entries in the column index vector corresponding to
1441 /// each row of the matrix have been arranged in increasing order. During
1442 /// the setup an additional vector will be set up; Index_of_diagonal_entries.
1443 /// The i-th entry of this vector contains the index of the last entry
1444 /// below or on the diagonal. If there are no entries below or on the
1445 /// diagonal then the corresponding entry is -1. If, however, there are
1446 /// no entries in the row then the entry is irrelevant and is kept
1447 /// as the initialised value; 0.
1448 //=============================================================================
1450 {
1451#ifdef OOMPH_HAS_MPI
1452 // We only need to produce a warning if the matrix is distributed
1453 if (this->distributed())
1454 {
1455 // Create an ostringstream object to store the warning message
1456 std::ostringstream warning_message;
1457
1458 // Create the warning messsage
1459 warning_message << "This method currently works for serial but "
1460 << "has not been tested with MPI!\n";
1461
1462 // Issue the warning
1466 }
1467#endif
1468
1469 // Get the number of rows in the matrix
1470 unsigned n_rows = this->nrow();
1471
1472 // Acquire access to the value, row_start and column_index arrays from
1473 // the CR matrix. Since we do not change anything in row_start_pt we
1474 // give it the const prefix
1475 double* value_pt = this->value();
1476 int* column_index_pt = this->column_index();
1477 const int* row_start_pt = this->row_start();
1478
1479 // Resize the Index_of_diagonal_entries vector
1480 Index_of_diagonal_entries.resize(n_rows, 0);
1481
1482 // Vector of pairs to store the column_index of each value in the i-th row
1483 // and its corresponding matrix entry
1485
1486 // Loop over the rows of the matrix
1487 for (unsigned i = 0; i < n_rows; i++)
1488 {
1489 // Find the number of nonzeros in the i-th row
1490 unsigned nnz_row_i = *(row_start_pt + i + 1) - *(row_start_pt + i);
1491
1492 // Variable to store the start of the i-th row
1493 unsigned i_row_start = *(row_start_pt + i);
1494
1495 // If there are no nonzeros in this row then the i-th entry of the vector
1496 // Index_of_diagonal_entries is irrelevant so we can simply let it be 0
1497 if (nnz_row_i == 0)
1498 {
1499 // Set the i-th entry
1501 }
1502 // If there are nonzeros in the i-th row
1503 else
1504 {
1505 // If there is more than one entry in the row resize the vector
1506 // column_index_and_value_row_i
1508
1509 // Loop over the entries in the row
1510 for (unsigned j = 0; j < nnz_row_i; j++)
1511 {
1512 // Assign the appropriate entries to column_index_and_value_row_i
1514 std::make_pair(*(column_index_pt + i_row_start + j),
1515 *(value_pt + i_row_start + j));
1516 }
1517
1518 // Sort the vector of pairs using the struct
1519 // CRDoubleMatrixComparisonHelper
1520 std::sort(column_index_and_value_row_i.begin(),
1523
1524 //-----------------------------------------------------------------------
1525 // Now that the entries of the i-th row have been sorted we can read
1526 // them back into value_pt and column_index_pt:
1527 //-----------------------------------------------------------------------
1528
1529 // Create a boolean variable to indicate whether or not the i-th entry
1530 // of Index_of_diagonal_entries has been set
1531 bool is_ith_entry_set = false;
1532
1533 // Loop over the entries in the vector column_index_and_value_row_i and
1534 // assign its entries to value_pt and column_index_pt
1535 for (unsigned j = 0; j < nnz_row_i; j++)
1536 {
1537 // Set the column index of the j-th nonzero value in the i-th row of
1538 // the matrix
1541
1542 // Set the value of the j-th nonzero value in the i-th row of
1543 // the matrix
1544 *(value_pt + i_row_start + j) =
1546
1547 // This if statement is used to set the i-th entry of the vector
1548 // Index_of_diagonal_entries if it has not yet been set
1549 if (!is_ith_entry_set)
1550 {
1551 // If the column index of the first entry in row i is greater than
1552 // the row number then the first entry must lie above the diagonal
1553 if (unsigned(*(column_index_pt + i_row_start)) > i)
1554 {
1555 // If the column index of the first entry in the row is greater
1556 // than the row number, i, then the i-th entry of
1557 // Index_of_diagonal_entries needs to be set to -1 to indicate
1558 // there are no entries below or on the diagonal
1560
1561 // Indicate that the i-th entry of Index_of_diagonal_entries has
1562 // been set
1563 is_ith_entry_set = true;
1564 }
1565 // If there are entries below or on the diagonal
1566 else
1567 {
1568 // If there is only one entry in the row then we know that this
1569 // will be the last entry below or on the diagonal because we have
1570 // eliminated the possibility that if there is only one entry,
1571 // that it lies above the diagonal
1572 if (nnz_row_i == 1)
1573 {
1574 // Set the index of the current entry to be the value of i-th
1575 // entry of Index_of_diagonal_entries
1577
1578 // Indicate that the i-th entry of Index_of_diagonal_entries has
1579 // been set
1580 is_ith_entry_set = true;
1581 }
1582 // It remains to now check the case that there is more than one
1583 // entry in the row. If there is more than one entry in the row
1584 // and there are entries below or on the diagonal then we have
1585 // three cases:
1586 // (1) The current entry lies on the diagonal;
1587 // (2) The current entry lies above the diagonal;
1588 // (3) The current entry lies below the diagonal;
1589 // The first case can easily be checked as done below. If the
1590 // second case occurs then we have just passed the last entry. We
1591 // know this because at least one entry lies on or below the
1592 // diagonal. If the second case it true then we need to assign the
1593 // previous entry to the vector Index_of_diagonal_entries.
1594 // Finally, we are left with case (3), which can be split into two
1595 // cases:
1596 // (3.1) The current entry lies below the diagonal but it
1597 // is not the last entry below or on the diagonal;
1598 // (3.2) The current entry lies below the diagonal and is
1599 // the last entry below or on the diagonal.
1600 // If case (3.1) holds then we can simply wait until we get to the
1601 // next entry in the row and examine that. If the next entry lies
1602 // on the diagonal then it will be swept up by case (1). If the
1603 // next entry lies above the diagonal then case (2) will sweep it
1604 // up and if neither is the case then we wait until the next entry
1605 // and so on. If, instead, case (3.2) holds then our last check
1606 // simply needs to check if the current entry is the last entry in
1607 // the row because if the last entry lies on the diagonal, case
1608 // (1) will sweep it up. If it lies above the diagonal, case (2)
1609 // will take care of it. Therefore, the only remaining case is
1610 // that it lies strictly below the diagonal and since it is the
1611 // last entry in the row it means the index of this entry needs to
1612 // be assigned to Index_of_diagonal_entries
1613
1614 // Case (1) : The current entry lies on the diagonal
1615 else if (unsigned(*(column_index_pt + i_row_start + j)) == i)
1616 {
1617 // Set the index of the current entry to be the value of i-th
1618 // entry of Index_of_diagonal_entries
1620
1621 // Indicate that the i-th entry of Index_of_diagonal_entries has
1622 // been set
1623 is_ith_entry_set = true;
1624 }
1625 // Case (2) : The current entry lies above the diagonal
1626 else if (unsigned(*(column_index_pt + i_row_start + j)) > i)
1627 {
1628 // Set the index of the current entry to be the value of i-th
1629 // entry of Index_of_diagonal_entries
1631
1632 // Indicate that the i-th entry of Index_of_diagonal_entries has
1633 // been set
1634 is_ith_entry_set = true;
1635 }
1636 // Case (3.2) : The current entry is the last entry in the row
1637 else if (j == nnz_row_i - 1)
1638 {
1639 // Set the index of the current entry to be the value of i-th
1640 // entry of Index_of_diagonal_entries
1642
1643 // Indicate that the i-th entry of Index_of_diagonal_entries has
1644 // been set
1645 is_ith_entry_set = true;
1646 } // if (nnz_row_i==1) else if
1647 } // if (*(column_index_pt+i_row_start)>i)
1648 } // if (!is_ith_entry_set)
1649 } // for (unsigned j=0;j<nnz_row_i;j++)
1650 } // if (nnz_row_i==0) else
1651 } // for (unsigned i=0;i<n_rows;i++)
1652 } // End of sort_entries()
1653
1654 //=============================================================================
1655 /// Clean method
1656 //=============================================================================
1658 {
1659 this->clear_distribution();
1661 Built = false;
1662
1663 if (Linear_solver_pt != 0) // Only clean up if it exists
1665 }
1666
1667 //=============================================================================
1668 /// build method: Takes the distribution and the number of columns, as
1669 /// well as the vector of values, vector of column indices,vector of row
1670 /// starts.
1671 //=============================================================================
1673 const unsigned& ncol,
1674 const Vector<double>& value,
1675 const Vector<int>& column_index,
1676 const Vector<int>& row_start)
1677 {
1678 // clear
1679 this->clear();
1680
1681 // store the Distribution
1682 this->build_distribution(distribution_pt);
1683
1684 // set the linear solver
1686
1687 // now build the matrix
1688 this->build(ncol, value, column_index, row_start);
1689 }
1690
1691 //=============================================================================
1692 /// method to rebuild the matrix, but not the distribution
1693 //=============================================================================
1694 void CRDoubleMatrix::build(const unsigned& ncol,
1695 const Vector<double>& value,
1696 const Vector<int>& column_index,
1697 const Vector<int>& row_start)
1698 {
1699 // call the underlying build method
1702
1703 // matrix has been build
1704 Built = true;
1705 }
1706
1707 //=============================================================================
1708 /// method to rebuild the matrix, but not the distribution
1709 //=============================================================================
1710 void CRDoubleMatrix::build_without_copy(const unsigned& ncol,
1711 const unsigned& nnz,
1712 double* value,
1713 int* column_index,
1714 int* row_start)
1715 {
1716 // call the underlying build method
1719 value, column_index, row_start, nnz, this->nrow_local(), ncol);
1720
1721 // matrix has been build
1722 Built = true;
1723 }
1724
1725 //=============================================================================
1726 /// Do LU decomposition
1727 //=============================================================================
1729 {
1730#ifdef PARANOID
1731 // check that the this matrix is built
1732 if (!Built)
1733 {
1734 std::ostringstream error_message_stream;
1735 error_message_stream << "This matrix has not been built.";
1739 }
1740#endif
1741
1742 // factorise using superlu or superlu dist if we oomph has mpi
1743 static_cast<SuperLUSolver*>(Default_linear_solver_pt)->factorise(this);
1744 }
1745
1746 //=============================================================================
1747 /// Do back-substitution
1748 //=============================================================================
1750 {
1751#ifdef PARANOID
1752 // check that the rhs vector is setup
1753 if (!rhs.built())
1754 {
1755 std::ostringstream error_message_stream;
1756 error_message_stream << "The vector rhs has not been setup";
1760 }
1761 // check that the rhs vector has the same distribution as this matrix
1762 if (!(*this->distribution_pt() == *rhs.distribution_pt()))
1763 {
1764 std::ostringstream error_message_stream;
1766 << "The vector rhs must have the same distribution as the matrix";
1770 }
1771#endif
1772
1773 // backsub
1776 ->backsub(rhs_copy, rhs);
1777 }
1778
1779 //=============================================================================
1780 /// Multiply the matrix by the vector x
1781 //=============================================================================
1783 {
1784#ifdef PARANOID
1785 // check that this matrix is built
1786 if (!Built)
1787 {
1788 std::ostringstream error_message_stream;
1789 error_message_stream << "This matrix has not been built";
1793 }
1794 // check that the distribution of x is setup
1795 if (!x.built())
1796 {
1797 std::ostringstream error_message_stream;
1798 error_message_stream << "The distribution of the vector x must be setup";
1802 }
1803 // Check to see if x.size() = ncol().
1804 if (this->ncol() != x.distribution_pt()->nrow())
1805 {
1806 std::ostringstream error_message_stream;
1807 error_message_stream << "The number of rows in the x vector and the "
1808 "number of columns in the "
1809 << "matrix must be the same";
1813 }
1814 // if the soln is distributed
1815 if (soln.built())
1816 {
1817 if (!(*soln.distribution_pt() == *this->distribution_pt()))
1818 {
1819 std::ostringstream error_message_stream;
1821 << "The soln vector is setup and therefore must have the same "
1822 << "distribution as the matrix";
1826 }
1827 }
1828#endif
1829
1830 // if soln is not setup then setup the distribution
1831 if (!soln.built())
1832 {
1833 // Resize and initialize the solution vector
1834 soln.build(this->distribution_pt(), 0.0);
1835 }
1836
1837 // Initialise
1838 soln.initialise(0.0);
1839
1840 // if distributed and on more than one processor use trilinos
1841 // otherwise use the oomph-lib methods
1842 if (this->distributed() &&
1843 this->distribution_pt()->communicator_pt()->nproc() > 1)
1844 {
1845#ifdef OOMPH_HAS_TRILINOS
1846 // This will only work if we have trilinos on board
1848#else
1849 std::ostringstream error_message_stream;
1851 << "Matrix-vector product on multiple processors with distributed "
1852 << "CRDoubleMatrix requires Trilinos.";
1856#endif
1857 }
1858 else
1859 {
1860 unsigned n = this->nrow();
1861 const int* row_start = CR_matrix.row_start();
1862 const int* column_index = CR_matrix.column_index();
1863 const double* value = CR_matrix.value();
1864 double* soln_pt = soln.values_pt();
1865 const double* x_pt = x.values_pt();
1866 for (unsigned long i = 0; i < n; i++)
1867 {
1868 soln_pt[i] = 0.0;
1869 for (long k = row_start[i]; k < row_start[i + 1]; k++)
1870 {
1871 unsigned long j = column_index[k];
1872 double a_ij = value[k];
1873 soln_pt[i] += a_ij * x_pt[j];
1874 }
1875 }
1876 }
1877 }
1878
1879 //=================================================================
1880 /// Multiply the transposed matrix by the vector x: soln=A^T x
1881 //=================================================================
1883 DoubleVector& soln) const
1884 {
1885#ifdef PARANOID
1886 // check that this matrix is built
1887 if (!Built)
1888 {
1889 std::ostringstream error_message_stream;
1890 error_message_stream << "This matrix has not been built";
1894 }
1895 // Check to see if x.size() = ncol().
1896 if (!(*this->distribution_pt() == *x.distribution_pt()))
1897 {
1898 std::ostringstream error_message_stream;
1900 << "The x vector and this matrix must have the same distribution.";
1904 }
1905 // if soln is setup then it should have the same distribution as x
1906 if (soln.built())
1907 {
1908 if (soln.distribution_pt()->nrow() != this->ncol())
1909 {
1910 std::ostringstream error_message_stream;
1912 << "The soln vector is setup and therefore must have the same "
1913 << "number of rows as the vector x";
1917 }
1918 }
1919#endif
1920
1921 // if soln is not setup then setup the distribution
1922 if (!soln.built())
1923 {
1926 this->ncol(),
1927 this->distributed());
1928 soln.build(dist_pt, 0.0);
1929 delete dist_pt;
1930 }
1931
1932 // Initialise
1933 soln.initialise(0.0);
1934
1935 if (this->distributed() &&
1936 this->distribution_pt()->communicator_pt()->nproc() > 1)
1937 {
1938#ifdef OOMPH_HAS_TRILINOS
1939 // This will only work if we have trilinos on board
1941#else
1942 std::ostringstream error_message_stream;
1944 << "Matrix-vector product on multiple processors with distributed "
1945 << "CRDoubleMatrix requires Trilinos.";
1949#endif
1950 }
1951 else
1952 {
1953 unsigned n = this->nrow();
1954 const int* row_start = CR_matrix.row_start();
1955 const int* column_index = CR_matrix.column_index();
1956 const double* value = CR_matrix.value();
1957 double* soln_pt = soln.values_pt();
1958 const double* x_pt = x.values_pt();
1959 // Matrix vector product
1960 for (unsigned long i = 0; i < n; i++)
1961 {
1962 for (long k = row_start[i]; k < row_start[i + 1]; k++)
1963 {
1964 unsigned long j = column_index[k];
1965 double a_ij = value[k];
1966 soln_pt[j] += a_ij * x_pt[i];
1967 }
1968 }
1969 }
1970 }
1971
1972 //===========================================================================
1973 /// Function to multiply this matrix by the CRDoubleMatrix matrix_in.
1974 /// In a serial matrix, there are 4 methods available:
1975 /// Method 1: First runs through this matrix and matrix_in to find the storage
1976 /// requirements for result - arrays of the correct size are
1977 /// then allocated before performing the calculation.
1978 /// Minimises memory requirements but more costly.
1979 /// Method 2: Grows storage for values and column indices of result 'on the
1980 /// fly' using an array of maps. Faster but more memory
1981 /// intensive.
1982 /// Method 3: Grows storage for values and column indices of result 'on the
1983 /// fly' using a vector of vectors. Not particularly impressive
1984 /// on the platforms we tried...
1985 /// Method 4: Trilinos Epetra Matrix Matrix multiply.
1986 /// Method 5: Trilinox Epetra Matrix Matrix Mulitply (ml based)
1987 /// If Trilinos is installed then Method 4 is employed by default, otherwise
1988 /// Method 2 is employed by default.
1989 /// In a distributed matrix, only Trilinos Epetra Matrix Matrix multiply
1990 /// is available.
1991 //=============================================================================
1993 CRDoubleMatrix& result) const
1994 {
1995#ifdef PARANOID
1996 // check that this matrix is built
1997 if (!Built)
1998 {
1999 std::ostringstream error_message_stream;
2000 error_message_stream << "This matrix has not been built";
2004 }
2005 // check that this matrix is built
2006 if (!matrix_in.built())
2007 {
2008 std::ostringstream error_message_stream;
2009 error_message_stream << "This matrix matrix_in has not been built";
2013 }
2014 // if soln is setup then it should have the same distribution as x
2015 if (result.built())
2016 {
2017 if (!(*result.distribution_pt() == *this->distribution_pt()))
2018 {
2019 std::ostringstream error_message_stream;
2021 << "The matrix result is setup and therefore must have the same "
2022 << "distribution as the vector x";
2026 }
2027 }
2028#endif
2029
2030 // if the result has not been setup, then store the distribution
2031 if (!result.distribution_built())
2032 {
2033 result.build(this->distribution_pt());
2034 }
2035
2036 // short name for Serial_matrix_matrix_multiply_method
2037 unsigned method = Serial_matrix_matrix_multiply_method;
2038
2039 // if this matrix is not distributed and matrix in is not distributed
2040 if (!this->distributed() && !matrix_in.distributed() &&
2041 ((method == 1) || (method == 2) || (method == 3)))
2042 {
2043 // NB N is number of rows!
2044 unsigned long N = this->nrow();
2045 unsigned long M = matrix_in.ncol();
2046 unsigned long Nnz = 0;
2047
2048 // pointers to arrays which store result
2049 int* Row_start = 0;
2050 double* Value = 0;
2051 int* Column_index = 0;
2052
2053 // get pointers to matrix_in
2054 const int* matrix_in_row_start = matrix_in.row_start();
2055 const int* matrix_in_column_index = matrix_in.column_index();
2056 const double* matrix_in_value = matrix_in.value();
2057
2058 // get pointers to this matrix
2059 const double* this_value = this->value();
2060 const int* this_row_start = this->row_start();
2061 const int* this_column_index = this->column_index();
2062
2063 // clock_t clock1 = clock();
2064
2065 // METHOD 1
2066 // --------
2067 if (method == 1)
2068 {
2069 // allocate storage for row starts
2070 Row_start = new int[N + 1];
2071 Row_start[0] = 0;
2072
2073 // a set to store number of non-zero columns in each row of result
2074 std::set<unsigned> columns;
2075
2076 // run through rows of this matrix and matrix_in to find number of
2077 // non-zero entries in each row of result
2078 for (unsigned long this_row = 0; this_row < N; this_row++)
2079 {
2080 // run through non-zeros in this_row of this matrix
2081 for (int this_ptr = this_row_start[this_row];
2083 this_ptr++)
2084 {
2085 // find column index for non-zero
2087
2088 // run through corresponding row in matrix_in
2091 matrix_in_ptr++)
2092 {
2093 // find column index for non-zero in matrix_in and store in
2094 // columns
2096 }
2097 }
2098 // update Row_start
2099 Row_start[this_row + 1] = Row_start[this_row] + columns.size();
2100
2101 // wipe values in columns
2102 columns.clear();
2103 }
2104
2105 // set Nnz
2106 Nnz = Row_start[N];
2107
2108 // allocate arrays for result
2109 Value = new double[Nnz];
2110 Column_index = new int[Nnz];
2111
2112 // set all values of Column_index to -1
2113 for (unsigned long i = 0; i < Nnz; i++)
2114 {
2115 Column_index[i] = -1;
2116 }
2117
2118 // Calculate values for result - first run through rows of this matrix
2119 for (unsigned long this_row = 0; this_row < N; this_row++)
2120 {
2121 // run through non-zeros in this_row
2122 for (int this_ptr = this_row_start[this_row];
2124 this_ptr++)
2125 {
2126 // find value of non-zero
2127 double this_val = this_value[this_ptr];
2128
2129 // find column associated with non-zero
2131
2132 // run through corresponding row in matrix_in
2135 matrix_in_ptr++)
2136 {
2137 // find column index for non-zero in matrix_in
2139
2140 // find position in result to insert value
2141 for (int ptr = Row_start[this_row];
2142 ptr <= Row_start[this_row + 1];
2143 ptr++)
2144 {
2145 if (ptr == Row_start[this_row + 1])
2146 {
2147 // error - have passed end of row without finding
2148 // correct column
2149 std::ostringstream error_message;
2150 error_message << "Error inserting value in result";
2151
2152 throw OomphLibError(error_message.str(),
2155 }
2156 else if (Column_index[ptr] == -1)
2157 {
2158 // first entry for this column index
2159 Column_index[ptr] = col;
2161 break;
2162 }
2163 else if (Column_index[ptr] == col)
2164 {
2165 // column index already exists - add value
2167 break;
2168 }
2169 }
2170 }
2171 }
2172 }
2173 }
2174
2175 // METHOD 2
2176 // --------
2177 else if (method == 2)
2178 {
2179 // generate array of maps to store values for result
2180 std::map<int, double>* result_maps = new std::map<int, double>[N];
2181
2182 // run through rows of this matrix
2183 for (unsigned long this_row = 0; this_row < N; this_row++)
2184 {
2185 // run through non-zeros in this_row
2186 for (int this_ptr = this_row_start[this_row];
2188 this_ptr++)
2189 {
2190 // find value of non-zero
2191 double this_val = this_value[this_ptr];
2192
2193 // find column index associated with non-zero
2195
2196 // run through corresponding row in matrix_in
2199 matrix_in_ptr++)
2200 {
2201 // find column index for non-zero in matrix_in
2203
2204 // insert value
2207 }
2208 }
2209 }
2210
2211 // allocate Row_start
2212 Row_start = new int[N + 1];
2213
2214 // copy across row starts
2215 Row_start[0] = 0;
2216 for (unsigned long row = 0; row < N; row++)
2217 {
2218 int size = result_maps[row].size();
2219 Row_start[row + 1] = Row_start[row] + size;
2220 }
2221
2222 // set Nnz
2223 Nnz = Row_start[N];
2224
2225 // allocate other arrays
2226 Value = new double[Nnz];
2227 Column_index = new int[Nnz];
2228
2229 // copy values and column indices
2230 for (unsigned long row = 0; row < N; row++)
2231 {
2232 unsigned ptr = Row_start[row];
2233 for (std::map<int, double>::iterator i = result_maps[row].begin();
2234 i != result_maps[row].end();
2235 i++)
2236 {
2237 Column_index[ptr] = i->first;
2238 Value[ptr] = i->second;
2239 ptr++;
2240 }
2241 }
2242
2243 // tidy up memory
2244 delete[] result_maps;
2245 }
2246
2247 // METHOD 3
2248 // --------
2249 else if (method == 3)
2250 {
2251 // vectors of vectors to store results
2252 std::vector<std::vector<int>> result_cols(N);
2253 std::vector<std::vector<double>> result_vals(N);
2254
2255 // run through the rows of this matrix
2256 for (unsigned long this_row = 0; this_row < N; this_row++)
2257 {
2258 // run through non-zeros in this_row
2259 for (int this_ptr = this_row_start[this_row];
2261 this_ptr++)
2262 {
2263 // find value of non-zero
2264 double this_val = this_value[this_ptr];
2265
2266 // find column index associated with non-zero
2268
2269 // run through corresponding row in matrix_in
2272 matrix_in_ptr++)
2273 {
2274 // find column index for non-zero in matrix_in
2276
2277 // insert value
2278 int size = result_cols[this_row].size();
2279 for (int i = 0; i <= size; i++)
2280 {
2281 if (i == size)
2282 {
2283 // first entry for this column
2284 result_cols[this_row].push_back(col);
2285 result_vals[this_row].push_back(
2287 }
2288 else if (col == result_cols[this_row][i])
2289 {
2290 // column already exists
2293 break;
2294 }
2295 }
2296 }
2297 }
2298 }
2299
2300 // allocate Row_start
2301 Row_start = new int[N + 1];
2302
2303 // copy across row starts
2304 Row_start[0] = 0;
2305 for (unsigned long row = 0; row < N; row++)
2306 {
2307 int size = result_cols[row].size();
2308 Row_start[row + 1] = Row_start[row] + size;
2309 }
2310
2311 // set Nnz
2312 Nnz = Row_start[N];
2313
2314 // allocate other arrays
2315 Value = new double[Nnz];
2316 Column_index = new int[Nnz];
2317
2318 // copy across values and column indices
2319 for (unsigned long row = 0; row < N; row++)
2320 {
2321 unsigned ptr = Row_start[row];
2322 unsigned nnn = result_cols[row].size();
2323 for (unsigned i = 0; i < nnn; i++)
2324 {
2325 Column_index[ptr] = result_cols[row][i];
2326 Value[ptr] = result_vals[row][i];
2327 ptr++;
2328 }
2329 }
2330 }
2331
2332 // build
2333 result.build_without_copy(M, Nnz, Value, Column_index, Row_start);
2334 }
2335
2336 // else we have to use trilinos
2337 else
2338 {
2339#ifdef OOMPH_HAS_TRILINOS
2340 bool use_ml = false;
2341 if (method == 5)
2342 {
2343 use_ml = true;
2344 }
2346#else
2347 std::ostringstream error_message;
2348 error_message << "Serial_matrix_matrix_multiply_method = "
2350 << " requires trilinos.";
2351 throw OomphLibError(
2352 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
2353#endif
2354 }
2355 }
2356
2357
2358 //=================================================================
2359 /// For every row, find the maximum absolute value of the
2360 /// entries in this row. Set all values that are less than alpha times
2361 /// this maximum to zero and return the resulting matrix in
2362 /// reduced_matrix. Note: Diagonal entries are retained regardless
2363 /// of their size.
2364 //=================================================================
2365 void CRDoubleMatrix::matrix_reduction(const double& alpha,
2367 {
2368 // number of rows in matrix
2369 long n_row = nrow_local();
2370 double max_row;
2371
2372 // Here's the packed format for the new matrix
2376
2377 // get pointers to the underlying data
2378 const int* row_start = CR_matrix.row_start();
2379 const int* column_index = CR_matrix.column_index();
2380 const double* value = CR_matrix.value();
2381
2382 // k is counter for the number of entries in the reduced matrix
2383 unsigned k = 0;
2384
2385 // Initialise row start
2386 B_row_start[0] = 0;
2387
2388 // Loop over rows
2389 for (long i = 0; i < n_row; i++)
2390 {
2391 // Initialise max value in row
2392 max_row = 0.0;
2393
2394 // Loop over entries in columns
2395 for (long j = row_start[i]; j < row_start[i + 1]; j++)
2396 {
2397 // Find max. value in row
2398 if (std::fabs(value[j]) > max_row)
2399 {
2400 max_row = std::fabs(value[j]);
2401 }
2402 }
2403
2404 // Decide if we need to retain the entries in the row
2405 for (long j = row_start[i]; j < row_start[i + 1]; j++)
2406 {
2407 // If we're on the diagonal or the value is sufficiently large: retain
2408 // i.e. copy across.
2409 if (i == column_index[j] || std::fabs(value[j]) > alpha * max_row)
2410 {
2411 B_value.push_back(value[j]);
2412 B_column_index.push_back(column_index[j]);
2413 k++;
2414 }
2415 }
2416 // This writes the row start for the next row -- equal to
2417 // to the number of entries written so far (C++ zero-based indexing!)
2418 B_row_start.push_back(k);
2419 }
2420
2421 // Build the matrix from the compressed format
2422 dynamic_cast<CRDoubleMatrix&>(reduced_matrix)
2423 .build(this->ncol(), B_value, B_column_index, B_row_start);
2424 }
2425
2426 //=============================================================================
2427 /// if this matrix is distributed then the equivalent global matrix is built
2428 /// using new and returned. The calling method is responsible for the
2429 /// destruction of the new matrix.
2430 //=============================================================================
2432 {
2433#ifdef OOMPH_HAS_MPI
2434 // if this matrix is not distributed then this method is redundant
2435 if (!this->distributed() ||
2436 this->distribution_pt()->communicator_pt()->nproc() == 1)
2437 {
2438 return new CRDoubleMatrix(*this);
2439 }
2440
2441 // nnz
2442 int nnz = this->nnz();
2443
2444 // my nrow local
2445 unsigned nrow_local = this->nrow_local();
2446
2447 // nrow global
2448 unsigned nrow = this->nrow();
2449
2450 // cache nproc
2451 int nproc = this->distribution_pt()->communicator_pt()->nproc();
2452
2453 // get the nnzs on the other processors
2454 int* dist_nnz_pt = new int[nproc];
2456 1,
2457 MPI_INT,
2459 1,
2460 MPI_INT,
2461 this->distribution_pt()->communicator_pt()->mpi_comm());
2462
2463 // create a int vector of first rows and nrow local and compute nnz global
2464 int* dist_first_row = new int[nproc];
2465 int* dist_nrow_local = new int[nproc];
2466 int nnz_global = 0;
2467 for (int p = 0; p < nproc; p++)
2468 {
2470 dist_first_row[p] = this->first_row(p);
2471 dist_nrow_local[p] = this->nrow_local(p);
2472 }
2473
2474 // compute the offset for the values and column index data
2475 int* nnz_offset = new int[nproc];
2476 nnz_offset[0] = 0;
2477 for (int p = 1; p < nproc; p++)
2478 {
2479 nnz_offset[p] = nnz_offset[p - 1] + dist_nnz_pt[p - 1];
2480 }
2481
2482 // get pointers to the (current) distributed data
2483 // const_cast required because MPI requires non-const data when sending
2484 // data
2485 int* dist_row_start = const_cast<int*>(this->row_start());
2486 int* dist_column_index = const_cast<int*>(this->column_index());
2487 double* dist_value = const_cast<double*>(this->value());
2488
2489 // space for the global matrix
2490 int* global_row_start = new int[nrow + 1];
2491 int* global_column_index = new int[nnz_global];
2492 double* global_value = new double[nnz_global];
2493
2494 // get the row starts
2496 nrow_local,
2497 MPI_INT,
2501 MPI_INT,
2502 this->distribution_pt()->communicator_pt()->mpi_comm());
2503
2504 // get the column indexes
2506 nnz,
2507 MPI_INT,
2510 nnz_offset,
2511 MPI_INT,
2512 this->distribution_pt()->communicator_pt()->mpi_comm());
2513
2514 // get the values
2516 nnz,
2517 MPI_DOUBLE,
2518 global_value,
2520 nnz_offset,
2521 MPI_DOUBLE,
2522 this->distribution_pt()->communicator_pt()->mpi_comm());
2523
2524 // finally the last row start
2526
2527 // update the other row start
2528 for (int p = 0; p < nproc; p++)
2529 {
2530 for (int i = 0; i < dist_nrow_local[p]; i++)
2531 {
2532 unsigned j = dist_first_row[p] + i;
2534 }
2535 }
2536
2537 // create the global distribution
2539 this->distribution_pt()->communicator_pt(), nrow, false);
2540
2541 // create the matrix
2542 CRDoubleMatrix* matrix_pt = new CRDoubleMatrix(dist_pt);
2543
2544 // copy of distribution taken so delete
2545 delete dist_pt;
2546
2547 // pass data into matrix
2548 matrix_pt->build_without_copy(this->ncol(),
2549 nnz_global,
2550 global_value,
2553
2554 // clean up
2555 delete[] dist_first_row;
2556 delete[] dist_nrow_local;
2557 delete[] nnz_offset;
2558 delete[] dist_nnz_pt;
2559
2560 // and return
2561 return matrix_pt;
2562#else
2563 return new CRDoubleMatrix(*this);
2564#endif
2565 }
2566
2567 //============================================================================
2568 /// The contents of the matrix are redistributed to match the new
2569 /// distribution. In a non-MPI build this method does nothing.
2570 /// \b NOTE 1: The current distribution and the new distribution must have
2571 /// the same number of global rows.
2572 /// \b NOTE 2: The current distribution and the new distribution must have
2573 /// the same Communicator.
2574 //============================================================================
2576 const LinearAlgebraDistribution* const& dist_pt)
2577 {
2578#ifdef OOMPH_HAS_MPI
2579#ifdef PARANOID
2580 // paranoid check that the nrows for both distributions is the
2581 // same
2582 if (dist_pt->nrow() != this->distribution_pt()->nrow())
2583 {
2584 std::ostringstream error_message;
2585 error_message << "The number of global rows in the new distribution ("
2586 << dist_pt->nrow() << ") is not equal to the number"
2587 << " of global rows in the current distribution ("
2588 << this->distribution_pt()->nrow() << ").\n";
2589 throw OomphLibError(
2590 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
2591 }
2592 // paranoid check that the current distribution and the new distribution
2593 // have the same Communicator
2594 OomphCommunicator temp_comm(*dist_pt->communicator_pt());
2595 if (!(temp_comm == *this->distribution_pt()->communicator_pt()))
2596 {
2597 std::ostringstream error_message;
2598 error_message << "The new distribution and the current distribution must "
2599 << "have the same communicator.";
2600 throw OomphLibError(
2601 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
2602 }
2603 // paranoid check that the matrix is build
2604 if (!this->built())
2605 {
2606 std::ostringstream error_message;
2607 error_message << "The matrix must be build to be redistributed";
2608 throw OomphLibError(
2609 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
2610 }
2611#endif
2612
2613 // if the two distributions are not the same
2614 // =========================================
2615 if (!((*this->distribution_pt()) == *dist_pt))
2616 {
2617 // Get the number of columns to build the matrix.
2618 unsigned long ncol = this->ncol();
2619
2620 // current data
2621 int* current_row_start = this->row_start();
2622 int* current_column_index = this->column_index();
2623 double* current_value = this->value();
2624
2625 // get the rank and the number of processors
2626 int my_rank = this->distribution_pt()->communicator_pt()->my_rank();
2627 int nproc = this->distribution_pt()->communicator_pt()->nproc();
2628
2629 // if both distributions are distributed
2630 // =====================================
2631 if (this->distributed() && dist_pt->distributed())
2632 {
2633 // new nrow_local and first_row data
2638 for (int i = 0; i < nproc; i++)
2639 {
2640 new_first_row[i] = dist_pt->first_row(i);
2641 new_nrow_local[i] = dist_pt->nrow_local(i);
2642 current_first_row[i] = this->first_row(i);
2643 current_nrow_local[i] = this->nrow_local(i);
2644 }
2645
2646 // compute which local rows are expected to be received from each
2647 // processor / sent to each processor
2652
2653 // for every processor compute first_row and nrow_local that will
2654 // will sent and received by this processor
2655 for (int p = 0; p < nproc; p++)
2656 {
2657 // start with data to be sent
2658 if ((new_first_row[p] <
2662 {
2666 std::min(
2670 }
2671
2672 // and data to be received
2673 if ((new_first_row[my_rank] <
2677 {
2681 std::min((current_first_row[p] + current_nrow_local[p]),
2684 }
2685 }
2686
2687 // determine how many nnzs to send to each processor
2689 for (int p = 0; p < nproc; p++)
2690 {
2691 if (nrow_local_for_proc[p] > 0)
2692 {
2698 }
2699 }
2700
2701 // next post non-blocking sends and recv for the nnzs
2705 for (int p = 0; p < nproc; p++)
2706 {
2707 if (p != my_rank)
2708 {
2709 // send
2710 if (nrow_local_for_proc[p] > 0)
2711 {
2714 1,
2716 p,
2717 0,
2718 this->distribution_pt()->communicator_pt()->mpi_comm(),
2719 &req);
2720 send_req.push_back(req);
2721 }
2722
2723 // recv
2724 if (nrow_local_from_proc[p] > 0)
2725 {
2728 1,
2730 p,
2731 0,
2732 this->distribution_pt()->communicator_pt()->mpi_comm(),
2733 &req);
2734 nnz_recv_req.push_back(req);
2735 }
2736 }
2737 // "send to self"
2738 else
2739 {
2741 }
2742 }
2743
2744 // allocate new storage for the new row_start
2745 int* new_row_start = new int[new_nrow_local[my_rank] + 1];
2746
2747 // wait for recvs to complete
2748 unsigned n_recv_req = nnz_recv_req.size();
2749 if (n_recv_req > 0)
2750 {
2753 }
2754
2755 // compute the nnz offset for each processor
2756 unsigned next_row = 0;
2757 unsigned nnz_count = 0;
2759 for (int p = 0; p < nproc; p++)
2760 {
2761 unsigned pp = 0;
2762 while (new_first_row[pp] != next_row)
2763 {
2764 pp++;
2765 }
2769 }
2770
2771 // allocate storage for the values and column indices
2772 int* new_column_index = new int[nnz_count];
2773 double* new_value = new double[nnz_count];
2774
2775 // post the sends and recvs for the matrix data
2779 for (int p = 0; p < nproc; p++)
2780 {
2781 // communicated with other processors
2782 if (p != my_rank)
2783 {
2784 // SEND
2785 if (nrow_local_for_proc[p] > 0)
2786 {
2787 // array of datatypes
2789
2790 // array of offsets
2791 MPI_Aint offsets[3];
2792
2793 // array of lengths
2794 int len[3];
2795
2796 // row start
2797 unsigned first_row_to_send =
2801 len[0] = 1;
2803 &offsets[0]);
2804 offsets[0] -= base_address;
2805
2806 // values
2807 unsigned first_coef_to_send =
2811 len[1] = 1;
2813 offsets[1] -= base_address;
2814
2815 // column index
2818 len[2] = 1;
2820 &offsets[2]);
2821 offsets[2] -= base_address;
2822
2823 // build the combined datatype
2827 MPI_Type_free(&types[0]);
2828 MPI_Type_free(&types[1]);
2829 MPI_Type_free(&types[2]);
2830
2831 // and send
2834 1,
2835 send_type,
2836 p,
2837 1,
2838 this->distribution_pt()->communicator_pt()->mpi_comm(),
2839 &req);
2840 send_req.push_back(req);
2842 }
2843
2844 // RECV
2845 if (nrow_local_from_proc[p] > 0)
2846 {
2847 // array of datatypes
2849
2850 // array of offsets
2851 MPI_Aint offsets[3];
2852
2853 // array of lengths
2854 int len[3];
2855
2856 // row start
2857 unsigned first_row_to_recv =
2861 len[0] = 1;
2863 offsets[0] -= base_address;
2864
2865 // values
2866 unsigned first_coef_to_recv = nnz_offset[p];
2869 len[1] = 1;
2871 offsets[1] -= base_address;
2872
2873 // column index
2876 len[2] = 1;
2878 &offsets[2]);
2879 offsets[2] -= base_address;
2880
2881 // build the combined datatype
2885 MPI_Type_free(&types[0]);
2886 MPI_Type_free(&types[1]);
2887 MPI_Type_free(&types[2]);
2888
2889 // and send
2892 1,
2893 recv_type,
2894 p,
2895 1,
2896 this->distribution_pt()->communicator_pt()->mpi_comm(),
2897 &req);
2898 recv_req.push_back(req);
2900 }
2901 }
2902 // other wise transfer data internally
2903 else
2904 {
2905 unsigned j =
2908 for (unsigned i = 0; i < nrow_local_for_proc[my_rank]; i++)
2909 {
2911 }
2913 for (unsigned i = 0; i < nnz_for_proc[my_rank]; i++)
2914 {
2915 new_value[nnz_offset[p] + i] =
2919 }
2920 }
2921 }
2922
2923 // wait for all recvs to complete
2925 if (n_recv_req > 0)
2926 {
2929 }
2930
2931 // next we need to update the row starts
2932 for (int p = 0; p < nproc; p++)
2933 {
2934 if (nrow_local_from_proc[p] > 0)
2935 {
2936 unsigned first_row =
2938 unsigned last_row = first_row + nrow_local_from_proc[p] - 1;
2939 int update = nnz_offset[p] - new_row_start[first_row];
2940 for (unsigned i = first_row; i <= last_row; i++)
2941 {
2942 new_row_start[i] += update;
2943 }
2944 }
2945 }
2946 new_row_start[dist_pt->nrow_local()] = nnz_count;
2947
2948 // wait for sends to complete
2949 unsigned n_send_req = send_req.size();
2950 if (n_recv_req > 0)
2951 {
2954 }
2955 // if (my_rank == 0)
2956 // {
2957 // CRDoubleMatrix* m_pt = this->global_matrix();
2958 // m_pt->sparse_indexed_output("m1.dat");
2959 // }
2960
2961 //
2962 this->build(dist_pt);
2963 this->build_without_copy(
2965 // if (my_rank == 0)
2966 // {
2967 // CRDoubleMatrix* m_pt = this->global_matrix();
2968 // m_pt->sparse_indexed_output("m2.dat");
2969 // }
2970 // this->sparse_indexed_output(oomph_info);
2971 abort();
2972 }
2973
2974 // if this matrix is distributed but the new distributed matrix is global
2975 // ======================================================================
2976 else if (this->distributed() && !dist_pt->distributed())
2977 {
2978 // nnz
2979 int nnz = this->nnz();
2980
2981 // nrow global
2982 unsigned nrow = this->nrow();
2983
2984 // cache nproc
2985 int nproc = this->distribution_pt()->communicator_pt()->nproc();
2986
2987 // get the nnzs on the other processors
2988 int* dist_nnz_pt = new int[nproc];
2990 1,
2991 MPI_INT,
2993 1,
2994 MPI_INT,
2995 this->distribution_pt()->communicator_pt()->mpi_comm());
2996
2997 // create an int array of first rows and nrow local and
2998 // compute nnz global
2999 int* dist_first_row = new int[nproc];
3000 int* dist_nrow_local = new int[nproc];
3001 for (int p = 0; p < nproc; p++)
3002 {
3003 dist_first_row[p] = this->first_row(p);
3004 dist_nrow_local[p] = this->nrow_local(p);
3005 }
3006
3007 // conpute the offset for the values and column index data
3008 // compute the nnz offset for each processor
3009 int next_row = 0;
3010 unsigned nnz_count = 0;
3012 for (int p = 0; p < nproc; p++)
3013 {
3014 unsigned pp = 0;
3015 while (dist_first_row[pp] != next_row)
3016 {
3017 pp++;
3018 }
3022 }
3023
3024 // get pointers to the (current) distributed data
3025 int* dist_row_start = this->row_start();
3026 int* dist_column_index = this->column_index();
3027 double* dist_value = this->value();
3028
3029 // space for the global matrix
3030 int* global_row_start = new int[nrow + 1];
3031 int* global_column_index = new int[nnz_count];
3032 double* global_value = new double[nnz_count];
3033
3034 // post the sends and recvs for the matrix data
3038 MPI_Get_address(global_value, &base_address);
3039
3040 // SEND
3041 if (dist_nrow_local[my_rank] > 0)
3042 {
3043 // types
3045
3046 // offsets
3047 MPI_Aint offsets[3];
3048
3049 // lengths
3050 int len[3];
3051
3052 // row start
3056 offsets[0] -= base_address;
3057 len[0] = 1;
3058
3059 // value
3063 offsets[1] -= base_address;
3064 len[1] = 1;
3065
3066 // column indices
3070 offsets[2] -= base_address;
3071 len[2] = 1;
3072
3073 // build the send type
3077 MPI_Type_free(&types[0]);
3078 MPI_Type_free(&types[1]);
3079 MPI_Type_free(&types[2]);
3080
3081 // and send
3082 for (int p = 0; p < nproc; p++)
3083 {
3084 if (p != my_rank)
3085 {
3087 MPI_Isend(global_value,
3088 1,
3089 send_type,
3090 p,
3091 1,
3092 this->distribution_pt()->communicator_pt()->mpi_comm(),
3093 &req);
3094 send_req.push_back(req);
3095 }
3096 }
3098 }
3099
3100 // RECV
3101 for (int p = 0; p < nproc; p++)
3102 {
3103 // communicated with other processors
3104 if (p != my_rank)
3105 {
3106 // RECV
3107 if (dist_nrow_local[p] > 0)
3108 {
3109 // types
3111
3112 // offsets
3113 MPI_Aint offsets[3];
3114
3115 // lengths
3116 int len[3];
3117
3118 // row start
3122 &offsets[0]);
3123 offsets[0] -= base_address;
3124 len[0] = 1;
3125
3126 // value
3129 MPI_Get_address(global_value + nnz_offset[p], &offsets[1]);
3130 offsets[1] -= base_address;
3131 len[1] = 1;
3132
3133 // column indices
3137 offsets[2] -= base_address;
3138 len[2] = 1;
3139
3140 // build the send type
3144 MPI_Type_free(&types[0]);
3145 MPI_Type_free(&types[1]);
3146 MPI_Type_free(&types[2]);
3147
3148 // and send
3150 MPI_Irecv(global_value,
3151 1,
3152 recv_type,
3153 p,
3154 1,
3155 this->distribution_pt()->communicator_pt()->mpi_comm(),
3156 &req);
3157 recv_req.push_back(req);
3159 }
3160 }
3161 // otherwise send to self
3162 else
3163 {
3165 unsigned first_row = dist_first_row[my_rank];
3166 for (unsigned i = 0; i < nrow_local; i++)
3167 {
3169 }
3170 unsigned offset = nnz_offset[my_rank];
3171 for (int i = 0; i < nnz; i++)
3172 {
3173 global_value[offset + i] = dist_value[i];
3175 }
3176 }
3177 }
3178
3179 // wait for all recvs to complete
3180 unsigned n_recv_req = recv_req.size();
3181 if (n_recv_req > 0)
3182 {
3185 }
3186
3187 // finally the last row start
3189
3190 // update the other row start
3191 for (int p = 0; p < nproc; p++)
3192 {
3193 for (int i = 0; i < dist_nrow_local[p]; i++)
3194 {
3195 unsigned j = dist_first_row[p] + i;
3197 }
3198 }
3199
3200 // wait for sends to complete
3201 unsigned n_send_req = send_req.size();
3202 if (n_recv_req > 0)
3203 {
3206 }
3207
3208 // rebuild the matrix
3210 this->distribution_pt()->communicator_pt(), nrow, false);
3211 this->build(dist_pt);
3212 this->build_without_copy(
3213 ncol, nnz_count, global_value, global_column_index, global_row_start);
3214
3215 // clean up
3216 delete dist_pt;
3217 delete[] dist_first_row;
3218 delete[] dist_nrow_local;
3219 delete[] dist_nnz_pt;
3220 }
3221
3222 // other the matrix is not distributed but it needs to be turned
3223 // into a distributed matrix
3224 // =============================================================
3225 else if (!this->distributed() && dist_pt->distributed())
3226 {
3227 // cache the new nrow_local
3228 unsigned nrow_local = dist_pt->nrow_local();
3229
3230 // and first_row
3231 unsigned first_row = dist_pt->first_row();
3232
3233 // get pointers to the (current) distributed data
3234 int* global_row_start = this->row_start();
3235 int* global_column_index = this->column_index();
3236 double* global_value = this->value();
3237
3238 // determine the number of non zeros required by this processor
3239 unsigned nnz = global_row_start[first_row + nrow_local] -
3241
3242 // allocate
3243 int* dist_row_start = new int[nrow_local + 1];
3244 int* dist_column_index = new int[nnz];
3245 double* dist_value = new double[nnz];
3246
3247 // copy
3248 int offset = global_row_start[first_row];
3249 for (unsigned i = 0; i <= nrow_local; i++)
3250 {
3252 }
3253 for (unsigned i = 0; i < nnz; i++)
3254 {
3256 dist_value[i] = global_value[offset + i];
3257 }
3258
3259 // rebuild
3260 this->build(dist_pt);
3261 this->build_without_copy(
3263 }
3264 }
3265#endif
3266 }
3267
3268 //=============================================================================
3269 /// Compute transpose of matrix
3270 //=============================================================================
3272 {
3273 // Get the number of non_zeros
3274 unsigned long nnon_zeros = this->nnz();
3275
3276 // Find the number of rows and columns in the transposed
3277 // matrix. We differentiate these from those associated
3278 // with the original matrix by appending the characters
3279 // '_t' onto the end
3280 unsigned long n_rows = this->nrow();
3281 unsigned long n_rows_t = this->ncol();
3282
3283#ifdef OOMPH_HAS_MPI
3284 // We only need to produce a warning if the matrix is distributed
3285 if (this->distributed())
3286 {
3287 // Create an ostringstream object to store the warning message
3288 std::ostringstream warning_message;
3289
3290 // Create the warning messsage
3291 warning_message << "This method currently works for serial but "
3292 << "has not been tested with MPI!\n";
3293
3294 // Issue the warning
3298 }
3299#endif
3300
3301 // Set up the distribution for the transposed matrix
3302 result->distribution_pt()->build(
3303 this->distribution_pt()->communicator_pt(), n_rows_t, false);
3304
3305 // Acquire access to the value, row_start and column_index
3306 // arrays from the CR matrix
3307 const double* value_pt = this->value();
3308 const int* row_start_pt = this->row_start();
3309 const int* column_index_pt = this->column_index();
3310
3311 // Allocate space for the row_start and column_index vectors
3312 // associated with the transpose of the current matrix.
3316
3317 // Loop over the column index vector and count how many times
3318 // each column number occurs and increment the appropriate
3319 // entry in row_start_t whose i+1'th entry will contain the
3320 // number of non-zeros in the i'th column of the matrix (this
3321 // is done so that the cumulative sum done next returns the
3322 // correct result)
3323 for (unsigned i = 0; i < nnon_zeros; i++)
3324 {
3325 // Assign entries to row_start_t (noting the first
3326 // entry is left as 0 for the cumulative sum done later)
3327 row_start_t[*(column_index_pt + i) + 1]++;
3328 }
3329
3330 // Calculate the sum of the first i entries in the row_start_t
3331 // vector and store the values in the i'th entry of row_start_t
3332 for (unsigned i = 1; i < n_rows_t + 1; i++)
3333 {
3334 // Calculate the cumulative sum
3335 row_start_t[i] += row_start_t[i - 1];
3336 }
3337
3338 // Allocate space for variables to store the indices of the
3339 // start and end of the non-zeros in a given row of the matrix
3340 unsigned i_row_s = 0;
3341 unsigned i_row_e = 0;
3342
3343 // Initialise 3 extra variables for readability of the
3344 // code in the subsequent piece of code
3345 unsigned a = 0;
3346 unsigned b = 0;
3347 unsigned c = 0;
3348
3349 // Vector needed to count the number of entries added
3350 // to each segment in column_index_t where each segment
3351 // is associated with each row in the transposed matrix
3353
3354 // Set the entries in column_index_t. To do this we loop
3355 // over each row of the original matrix (equivalently
3356 // the number of columns in the transpose)
3357 for (unsigned i_row = 0; i_row < n_rows; i_row++)
3358 {
3359 // Here we find the indices of the start and end
3360 // of the non-zeros in i_row'th row of the matrix.
3361 // [Note, there should be a -1 on i_row_e but this
3362 // is ignored so that we use a strict inequality
3363 // in the subsequent for-loop!]
3364 i_row_s = *(row_start_pt + i_row);
3365 i_row_e = *(row_start_pt + i_row + 1);
3366
3367 // Loop over the entries in the i_row'th row
3368 // of the matrix
3369 for (unsigned j = i_row_s; j < i_row_e; j++)
3370 {
3371 // The value of a is the column index of the j'th
3372 // element in the i_row'th row of the original matrix
3373 // (which is also the row index of the associated
3374 // non-zero in the transposed matrix)
3375 a = *(column_index_pt + j);
3376
3377 // The value of b will be used to find the start
3378 // of the appropriate segment of column_index_t
3379 // that the non-zero belongs in
3380 b = row_start_t[a];
3381
3382 // Find the number of elements already added to
3383 // this segment (to find which entry of the segment
3384 // the value i_row, the column index of the non-zero
3385 // in the transposed matrix, should be assigned to)
3386 c = counter[*(column_index_pt + j)];
3387
3388 // Assign the value i_row to the appropriate entry
3389 // in column_index_t
3390 column_index_t[b + c] = i_row;
3391 value_t[b + c] = *(value_pt + j);
3392
3393 // Increment the j'th value of the vector counter
3394 // to indicate another non-zero index has been
3395 // added into the
3396 counter[*(column_index_pt + j)]++;
3397
3398 } // End of for-loop over i_row'th row of the matrix
3399
3400 } // End of for-loop over rows of the matrix
3401
3402 // Build the matrix (note: the value of n_cols for the
3403 // transposed matrix is n_rows for the original matrix)
3405
3406 } // End of the function
3407
3408
3409 //=============================================================================
3410 /// Compute infinity (maximum) norm of matrix
3411 //=============================================================================
3413 {
3414#ifdef PARANOID
3415 // paranoid check that the vector is setup
3416 if (!this->distribution_built())
3417 {
3418 std::ostringstream error_message;
3419 error_message << "This matrix must be setup.";
3420 throw OomphLibError(
3421 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3422 }
3423#endif
3424
3425 // compute the local norm
3426 unsigned nrow_local = this->nrow_local();
3427 double n = 0;
3428 const int* row_start = CR_matrix.row_start();
3429 const double* value = CR_matrix.value();
3430 for (unsigned i = 0; i < nrow_local; i++)
3431 {
3432 double a = 0;
3433 for (int j = row_start[i]; j < row_start[i + 1]; j++)
3434 {
3435 a += fabs(value[j]);
3436 }
3437 n = std::max(n, a);
3438 }
3439
3440 // if this vector is distributed and on multiple processors then gather
3441#ifdef OOMPH_HAS_MPI
3442 double n2 = n;
3443 if (this->distributed() &&
3444 this->distribution_pt()->communicator_pt()->nproc() > 1)
3445 {
3447 &n2,
3448 1,
3449 MPI_DOUBLE,
3450 MPI_MAX,
3451 this->distribution_pt()->communicator_pt()->mpi_comm());
3452 }
3453 n = n2;
3454#endif
3455
3456 // and return
3457 return n;
3458 }
3459
3460 //=============================================================================
3461 /// Return the diagonal entries of the matrix.
3462 /// This only works with square matrices. This condition may be relaxed
3463 /// in the future if need be.
3464 //=============================================================================
3466 {
3467#ifdef PARANOID
3468 // Check if the matrix has been built.
3469 if (!this->built())
3470 {
3471 std::ostringstream error_message;
3472 error_message << "The matrix has not been built.\n"
3473 << "Please build it...\n";
3474 throw OomphLibError(
3475 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3476 }
3477
3478 // Check if this is a square matrix.
3479 if (this->nrow() != this->ncol())
3480 {
3481 std::ostringstream error_message;
3482 error_message << "The matrix is not square. Can only get the diagonal\n"
3483 << "entries of a square matrix.\n";
3484 throw OomphLibError(
3485 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3486 }
3487#endif
3488
3489 // We get the diagonal entries on this processor.
3490 unsigned nrow_local = this->nrow_local();
3491
3492 // Create storage for the diagonal entries.
3494 result_vec.reserve(nrow_local);
3495
3496 // Get the first row for the column offset.
3497 unsigned first_row = this->first_row();
3498
3499 // Loop through the local rows.
3500 for (unsigned i = 0; i < nrow_local; i++)
3501 {
3502 // The column entries are globally indexed.
3503 unsigned diag_entry_col = first_row + i;
3504
3505 // Push back the diagonal entry.
3507 }
3508
3509 return result_vec;
3510 }
3511
3512 //=============================================================================
3513 /// Element-wise addition of this matrix with matrix_in.
3514 //=============================================================================
3517 {
3518#ifdef PARANOID
3519 // Check if this matrix is built.
3520 if (!this->built())
3521 {
3522 std::ostringstream error_message;
3523 error_message << "The matrix is not built.\n"
3524 << "Please build the matrix!\n";
3525 throw OomphLibError(
3526 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3527 }
3528
3529 // Check if this matrix_in is built.
3530 if (!matrix_in.built())
3531 {
3532 std::ostringstream error_message;
3533 error_message << "The matrix matrix_in is not built.\n"
3534 << "Please build the matrix!\n";
3535 throw OomphLibError(
3536 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3537 }
3538
3539 // Check if the dimensions of this matrix and matrix_in are the same.
3540 unsigned long this_nrow = this->nrow();
3541 unsigned long matrix_in_nrow = matrix_in.nrow();
3543 {
3544 std::ostringstream error_message;
3545 error_message << "matrix_in has a different number of rows than\n"
3546 << "this matrix.\n";
3547 throw OomphLibError(
3548 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3549 }
3550
3551 unsigned long this_ncol = this->ncol();
3552 unsigned long matrix_in_ncol = matrix_in.ncol();
3554 {
3555 std::ostringstream error_message;
3556 error_message << "matrix_in has a different number of columns than\n"
3557 << "this matrix.\n";
3558 throw OomphLibError(
3559 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3560 }
3561
3562 // Check if the distribution is the same (Otherwise we may have to send and
3563 // receive data from other processors - which is not implemented!)
3564 if (*(this->distribution_pt()) != *(matrix_in.distribution_pt()))
3565 {
3566 std::ostringstream error_message;
3567 error_message << "matrix_in must have the same distribution as\n"
3568 << "this matrix.\n";
3569 throw OomphLibError(
3570 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3571 }
3572
3573 // If the matrix is built, check that it's existing distribution is the
3574 // same as the in matrix. Since we'll use the same distribution instead
3575 // of completely rebuilding it.
3576 if (result_matrix.built() &&
3577 (*result_matrix.distribution_pt() != *matrix_in.distribution_pt()))
3578 {
3579 std::ostringstream error_message;
3580 error_message << "The result_matrix is built. "
3581 << "But has a different distribution from matrix_in \n"
3582 << "They need to be the same.\n";
3583 throw OomphLibError(
3584 error_message.str(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION);
3585 }
3586#endif
3587
3588 // To add the elements of two CRDoubleMatrices, we need to know the union of
3589 // the sparsity patterns. This is determined by the column indices.
3590 // We add the column indices and values (entries) as a key-value pair in
3591 // a map (per row). We then read these out into two column indices and
3592 // values vector for the result matrix.
3593
3594 unsigned nrow_local = this->nrow_local();
3598 res_row_start.reserve(nrow_local + 1);
3599
3600 // The row_start and column_indices
3601 const int* this_column_indices = this->column_index();
3602 const int* this_row_start = this->row_start();
3603 const int* in_column_indices = matrix_in.column_index();
3604 const int* in_row_start = matrix_in.row_start();
3605
3606 // Values from this matrix and matrix_in.
3607 const double* this_values = this->value();
3608 const double* in_values = matrix_in.value();
3609
3610
3611 // The first entry in row_start is always zero.
3612 res_row_start.push_back(0);
3613
3614 // Loop through the rows of both matrices and insert the column indices and
3615 // values as a key-value pair.
3616 for (unsigned row_i = 0; row_i < nrow_local; row_i++)
3617 {
3618 // Create the map for this row.
3619 std::map<int, double> res_row_map;
3620
3621 // Insert the column and value pair for this matrix.
3622 for (int i = this_row_start[row_i]; i < this_row_start[row_i + 1]; i++)
3623 {
3625 }
3626
3627 // Insert the column and value pair for in matrix.
3628 for (int i = in_row_start[row_i]; i < in_row_start[row_i + 1]; i++)
3629 {
3631 }
3632
3633 // Fill in the row start
3634 res_row_start.push_back(res_row_start.back() + res_row_map.size());
3635
3636 // Now insert the key into res_column_indices and value into res_values
3637 for (std::map<int, double>::iterator it = res_row_map.begin();
3638 it != res_row_map.end();
3639 ++it)
3640 {
3641 res_column_indices.push_back(it->first);
3642 res_values.push_back(it->second);
3643 }
3644 }
3645
3646 // Finally build the result_matrix.
3647 if (result_matrix.distribution_pt()->built())
3648 {
3649 // Use the existing distribution.
3650 result_matrix.build(
3651 this->ncol(), res_values, res_column_indices, res_row_start);
3652 }
3653 else
3654 {
3655 // Build with THIS distribution
3656 result_matrix.build(this->distribution_pt(),
3657 this->ncol(),
3658 res_values,
3661 }
3662 }
3663
3664 //=================================================================
3665 /// Namespace for helper functions for CRDoubleMatrices
3666 //=================================================================
3667 namespace CRDoubleMatrixHelpers
3668 {
3669 //============================================================================
3670 /// Builds a uniformly distributed matrix.
3671 /// A locally replicated matrix is constructed then redistributed using
3672 /// OOMPH-LIB's default uniform row distribution.
3673 /// This is memory intensive thus should be used for
3674 /// testing or small problems only.
3675 //============================================================================
3677 const unsigned& nrow,
3678 const unsigned& ncol,
3679 const OomphCommunicator* const comm_pt,
3680 const Vector<double>& values,
3682 const Vector<int>& row_start,
3684 {
3685#ifdef PARANOID
3686 // Check if the communicator exists.
3687 if (comm_pt == 0)
3688 {
3689 std::ostringstream error_message;
3690 error_message << "Please supply the communicator.\n";
3691 throw OomphLibError(error_message.str(),
3694 }
3695 // Is the out matrix built? We need an empty matrix!
3696 if (matrix_out.built())
3697 {
3698 std::ostringstream error_message;
3699 error_message << "The result matrix has been built.\n"
3700 << "Please clear the matrix.\n";
3701 throw OomphLibError(error_message.str(),
3704 }
3705#endif
3706
3707 // Create the locally replicated distribution.
3708 bool distributed = false;
3710 comm_pt, nrow, distributed);
3711
3712 // Create the matrix.
3714 ncol,
3715 values,
3717 row_start);
3718
3719 // Create the distributed distribution.
3720 distributed = true;
3722 comm_pt, nrow, distributed);
3723
3724 // Redistribute the matrix.
3725 matrix_out.redistribute(&distributed_distribution);
3726 }
3727
3728 //============================================================================
3729 /// Compute infinity (maximum) norm of sub blocks as if it was one matrix
3730 //============================================================================
3732 {
3733 // The number of block rows and columns
3734 const unsigned nblockrow = matrix_pt.nrow();
3735 const unsigned nblockcol = matrix_pt.ncol();
3736
3737#ifdef PARANOID
3738 // Check that tehre is at least one matrix.
3739 if (matrix_pt.nrow() == 0)
3740 {
3741 std::ostringstream error_message;
3742 error_message << "There are no matrices... \n";
3743 throw OomphLibError(error_message.str(),
3746 }
3747
3748
3749 // Check that all matrix_pt pointers are not null
3750 // and the matrices are built.
3751 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
3752 {
3753 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
3754 {
3755 if (matrix_pt(block_row_i, block_col_i) == 0)
3756 {
3757 std::ostringstream error_message;
3758 error_message << "The pointer martrix_pt(" << block_row_i << ","
3759 << block_col_i << ") is null.\n";
3760 throw OomphLibError(error_message.str(),
3763 }
3764
3765 if (!matrix_pt(block_row_i, block_col_i)->built())
3766 {
3767 std::ostringstream error_message;
3768 error_message << "The matrix at martrix_pt(" << block_row_i << ","
3769 << block_col_i << ") is not built.\n";
3770 throw OomphLibError(error_message.str(),
3773 }
3774 }
3775 }
3776#endif
3777
3778#ifdef OOMPH_HAS_MPI
3779
3780 // The communicator pointer from block (0,0)
3781 const OomphCommunicator* const comm_pt =
3782 matrix_pt(0, 0)->distribution_pt()->communicator_pt();
3783
3784#ifdef PARANOID
3785
3786
3787 // Check that all communicators are the same
3788 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
3789 {
3790 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
3791 {
3792 // Communicator for this block matrix.
3794 *(matrix_pt(block_row_i, block_col_i)
3795 ->distribution_pt()
3796 ->communicator_pt());
3797 if (*comm_pt != current_block_comm)
3798 {
3799 std::ostringstream error_message;
3800 error_message << "The communicator of block martrix_pt("
3801 << block_row_i << "," << block_col_i
3802 << ") is not the same as block "
3803 << "matrix_pt(0,0).\n";
3804 throw OomphLibError(error_message.str(),
3807 }
3808 }
3809 }
3810
3811 // Check that all distributed boolean are the same (if on more than 1
3812 // core)
3813 if (comm_pt->nproc() > 1)
3814 {
3815 // Get the distributed boolean from matrix_pt(0,0)
3816 bool first_distributed = matrix_pt(0, 0)->distributed();
3817
3818 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
3819 {
3820 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
3821 {
3822 // Is the current block distributed?
3823 bool current_distributed =
3824 matrix_pt(block_row_i, block_col_i)->distributed();
3825
3827 {
3828 std::ostringstream error_message;
3829 error_message << "Block matrix_pt(" << block_row_i << ","
3830 << block_col_i << ") and block matrix_pt(0,0) "
3831 << "have a different distributed boolean.\n";
3832 throw OomphLibError(error_message.str(),
3835 }
3836 }
3837 }
3838 }
3839
3840 // Check that all sub matrix dimensions "make sense"
3841 // We need to check that all the matrices in the same row has the same
3842 // nrow. Then repeat for the columns.
3843
3844 // Check the nrow of each block row.
3845 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
3846 {
3847 // Get the nrow to compare against from the first column.
3848 const unsigned first_block_nrow = matrix_pt(block_row_i, 0)->nrow();
3849
3850 // Loop through the block columns.
3851 for (unsigned block_col_i = 1; block_col_i < nblockcol; block_col_i++)
3852 {
3853 // If the nrow of this block is not the same as the nrow from the
3854 // first block in this block row, throw an error.
3855 const unsigned current_block_nrow =
3856 matrix_pt(block_row_i, block_col_i)->nrow();
3857
3859 {
3860 std::ostringstream error_message;
3861 error_message << "First block has nrow = " << current_block_nrow
3862 << ". But martrix_pt(" << block_row_i << ","
3863 << block_col_i
3864 << ") has nrow = " << current_block_nrow << ".\n";
3865 throw OomphLibError(error_message.str(),
3868 }
3869 }
3870 }
3871
3872 // Check the ncol of each block column.
3873 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
3874 {
3875 // Get the ncol from the first block row to compare against.
3876 const unsigned first_block_ncol = matrix_pt(0, block_col_i)->ncol();
3877
3878 for (unsigned block_row_i = 1; block_row_i < nblockrow; block_row_i++)
3879 {
3880 // Get the ncol for the current block.
3881 const unsigned current_block_ncol =
3882 matrix_pt(block_row_i, block_col_i)->ncol();
3883
3885 {
3886 std::ostringstream error_message;
3887 error_message << "First block has ncol = " << current_block_ncol
3888 << ". But martrix_pt(" << block_row_i << ","
3889 << block_col_i
3890 << ") has ncol = " << current_block_ncol << ".\n";
3891 throw OomphLibError(error_message.str(),
3894 }
3895 }
3896 }
3897
3898 // Check that the distribution for each block row is the same.
3899 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
3900 {
3901 // The first distribution of this block row.
3903 *(matrix_pt(block_row_i, 0)->distribution_pt());
3904
3905 // Loop through the rest of the block columns.
3906 for (unsigned block_col_i = 1; block_col_i < nblockcol; block_col_i++)
3907 {
3908 // Get the distribution from the current block.
3910 matrix_pt(block_row_i, block_col_i)->distribution_pt();
3911
3912 // Compare the first distribution against the current.
3913 if (first_dist != current_dist)
3914 {
3915 std::ostringstream error_message;
3916 error_message << "First distribution of block row " << block_row_i
3917 << " is different from the distribution from "
3918 << "martrix_pt(" << block_row_i << "," << block_col_i
3919 << ").\n";
3920 throw OomphLibError(error_message.str(),
3923 }
3924 }
3925 }
3926#endif
3927
3928#endif
3929
3930 // Loop thrpugh the block rows, then block columns to
3931 // compute the local inf norm
3932 double inf_norm = 0;
3933 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
3934 {
3935 // Get the number of local rows from the first block.
3936 unsigned block_nrow_local = matrix_pt(block_row_i, 0)->nrow_local();
3937
3938 // Loop through the block_nrow_local in this block row
3939 for (unsigned local_row_i = 0; local_row_i < block_nrow_local;
3940 local_row_i++)
3941 {
3942 double abs_sum_of_row = 0;
3943 // Loop through the block columns
3944 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
3945 {
3946 // Locally cache the pointer to the current block.
3948
3949 const int* row_start = block_pt->row_start();
3950 const double* value = block_pt->value();
3951
3952 // Loop through the values
3953 for (int val_i = row_start[local_row_i];
3954 val_i < row_start[local_row_i + 1];
3955 val_i++)
3956 {
3957 abs_sum_of_row += fabs(value[val_i]);
3958 }
3959 }
3960 // Store the max row
3961 inf_norm = std::max(inf_norm, abs_sum_of_row);
3962 }
3963 }
3964
3965 // if this vector is distributed and on multiple processors then gather
3966#ifdef OOMPH_HAS_MPI
3967 double inf_norm_local = inf_norm;
3968 if (matrix_pt(0, 0)->distributed() && comm_pt->nproc() > 1)
3969 {
3972 1,
3973 MPI_DOUBLE,
3974 MPI_MAX,
3975 comm_pt->mpi_comm());
3976 }
3978#endif
3979
3980 // and return
3981 return inf_norm;
3982 }
3983
3984 //============================================================================
3985 /// Calculates the largest Gershgorin disc whilst preserving the sign. Let
3986 /// A be an n by n matrix, with entries aij. For \f$ i \in \{ 1,...,n \} \f$
3987 /// let \f$ R_i = \sum_{i\neq j} |a_{ij}| \f$ be the sum of the absolute
3988 /// values of the non-diagonal entries in the i-th row. Let \f$ D(a_{ii},R_i) \f$
3989 /// be the closed disc centered at \f$ a_{ii} \f$ with radius \f$ R_i \f$,
3990 /// such a disc is called a Gershgorin disc.
3991 ///
3992 /// \n
3993 ///
3994 /// We calculate \f$ |D(a_{ii},R_i)|_{max} \f$ and multiply by the sign of
3995 /// the diagonal entry.
3996 ///
3997 /// \n
3998 ///
3999 /// The DenseMatrix of CRDoubleMatrices are treated as if they are one
4000 /// large matrix. Therefore the dimensions of the sub matrices has to
4001 /// "make sense", there is a paranoid check for this.
4002 //============================================================================
4004 const DenseMatrix<CRDoubleMatrix*>& matrix_pt)
4005 {
4006 // The number of block rows and columns
4007 const unsigned nblockrow = matrix_pt.nrow();
4008 const unsigned nblockcol = matrix_pt.ncol();
4009
4010#ifdef PARANOID
4011 // Check that tehre is at least one matrix.
4012 if (matrix_pt.nrow() == 0)
4013 {
4014 std::ostringstream error_message;
4015 error_message << "There are no matrices... \n";
4016 throw OomphLibError(error_message.str(),
4019 }
4020
4021
4022 // Check that all matrix_pt pointers are not null
4023 // and the matrices are built.
4024 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
4025 {
4026 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
4027 {
4028 if (matrix_pt(block_row_i, block_col_i) == 0)
4029 {
4030 std::ostringstream error_message;
4031 error_message << "The pointer martrix_pt(" << block_row_i << ","
4032 << block_col_i << ") is null.\n";
4033 throw OomphLibError(error_message.str(),
4036 }
4037
4038 if (!matrix_pt(block_row_i, block_col_i)->built())
4039 {
4040 std::ostringstream error_message;
4041 error_message << "The matrix at martrix_pt(" << block_row_i << ","
4042 << block_col_i << ") is not built.\n";
4043 throw OomphLibError(error_message.str(),
4046 }
4047 }
4048 }
4049#endif
4050
4051
4052#ifdef OOMPH_HAS_MPI
4053
4054 // The communicator pointer from block (0,0)
4055 // All communicators should be the same, we check this next.
4056 const OomphCommunicator* const comm_pt =
4057 matrix_pt(0, 0)->distribution_pt()->communicator_pt();
4058
4059#ifdef PARANOID
4060
4061 // Check that all communicators are the same
4062 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
4063 {
4064 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
4065 {
4066 // Communicator for this block matrix.
4068 *(matrix_pt(block_row_i, block_col_i)
4069 ->distribution_pt()
4070 ->communicator_pt());
4071 if (*comm_pt != current_block_comm)
4072 {
4073 std::ostringstream error_message;
4074 error_message << "The communicator of block martrix_pt("
4075 << block_row_i << "," << block_col_i
4076 << ") is not the same as block "
4077 << "matrix_pt(0,0).\n";
4078 throw OomphLibError(error_message.str(),
4081 }
4082 }
4083 }
4084
4085 // Check that all distributed boolean are the same (if on more than 1
4086 // core)
4087 if (comm_pt->nproc() > 1)
4088 {
4089 // Get the distributed boolean from matrix_pt(0,0)
4090 bool first_distributed = matrix_pt(0, 0)->distributed();
4091
4092 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
4093 {
4094 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
4095 {
4096 // Is the current block distributed?
4097 bool current_distributed =
4098 matrix_pt(block_row_i, block_col_i)->distributed();
4099
4101 {
4102 std::ostringstream error_message;
4103 error_message << "Block matrix_pt(" << block_row_i << ","
4104 << block_col_i << ") and block matrix_pt(0,0) "
4105 << "have a different distributed boolean.\n";
4106 throw OomphLibError(error_message.str(),
4109 }
4110 }
4111 }
4112 }
4113
4114 // Check that all sub matrix dimensions "make sense"
4115 // We need to check that all the matrices in the same row has the same
4116 // nrow. Then repeat for the columns.
4117
4118 // Check the nrow of each block row.
4119 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
4120 {
4121 // Get the nrow to compare against from the first column.
4122 const unsigned first_block_nrow = matrix_pt(block_row_i, 0)->nrow();
4123
4124 // Loop through the block columns.
4125 for (unsigned block_col_i = 1; block_col_i < nblockcol; block_col_i++)
4126 {
4127 // If the nrow of this block is not the same as the nrow from the
4128 // first block in this block row, throw an error.
4129 const unsigned current_block_nrow =
4130 matrix_pt(block_row_i, block_col_i)->nrow();
4131
4133 {
4134 std::ostringstream error_message;
4135 error_message << "First block has nrow = " << current_block_nrow
4136 << ". But martrix_pt(" << block_row_i << ","
4137 << block_col_i
4138 << ") has nrow = " << current_block_nrow << ".\n";
4139 throw OomphLibError(error_message.str(),
4142 }
4143 }
4144 }
4145
4146 // Check the ncol of each block column.
4147 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
4148 {
4149 // Get the ncol from the first block row to compare against.
4150 const unsigned first_block_ncol = matrix_pt(0, block_col_i)->ncol();
4151
4152 for (unsigned block_row_i = 1; block_row_i < nblockrow; block_row_i++)
4153 {
4154 // Get the ncol for the current block.
4155 const unsigned current_block_ncol =
4156 matrix_pt(block_row_i, block_col_i)->ncol();
4157
4159 {
4160 std::ostringstream error_message;
4161 error_message << "First block has ncol = " << current_block_ncol
4162 << ". But martrix_pt(" << block_row_i << ","
4163 << block_col_i
4164 << ") has ncol = " << current_block_ncol << ".\n";
4165 throw OomphLibError(error_message.str(),
4168 }
4169 }
4170 }
4171
4172 // Check that the distribution for each block row is the same.
4173 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
4174 {
4175 // The first distribution of this block row.
4177 *(matrix_pt(block_row_i, 0)->distribution_pt());
4178
4179 // Loop through the rest of the block columns.
4180 for (unsigned block_col_i = 1; block_col_i < nblockcol; block_col_i++)
4181 {
4182 // Get the distribution from the current block.
4184 matrix_pt(block_row_i, block_col_i)->distribution_pt();
4185
4186 // Compare the first distribution against the current.
4187 if (first_dist != current_dist)
4188 {
4189 std::ostringstream error_message;
4190 error_message << "First distribution of block row " << block_row_i
4191 << " is different from the distribution from "
4192 << "martrix_pt(" << block_row_i << "," << block_col_i
4193 << ").\n";
4194 throw OomphLibError(error_message.str(),
4197 }
4198 }
4199 }
4200
4201#endif
4202#endif
4203
4204 // Loop thrpugh the block rows, then block columns to
4205 // compute the local inf norm
4206 double extreme_disc = 0;
4207 for (unsigned block_row_i = 0; block_row_i < nblockrow; block_row_i++)
4208 {
4209 // Get the number of local rows from the first block.
4210 unsigned block_nrow_local = matrix_pt(block_row_i, 0)->nrow_local();
4211
4212 // Loop through the block_nrow_local in this block row
4213 for (unsigned local_row_i = 0; local_row_i < block_nrow_local;
4214 local_row_i++)
4215 {
4216 double abs_sum_of_row = 0;
4217 // Loop through the block columns
4218 for (unsigned block_col_i = 0; block_col_i < nblockcol; block_col_i++)
4219 {
4220 // Locally cache the pointer to the current block.
4222
4223 const int* row_start = block_pt->row_start();
4224 const double* value = block_pt->value();
4225
4226 // Loop through the values
4227 for (int val_i = row_start[local_row_i];
4228 val_i < row_start[local_row_i + 1];
4229 val_i++)
4230 {
4231 abs_sum_of_row += fabs(value[val_i]);
4232 }
4233 }
4234
4235 // Now minus the diagonal entry...
4236 // Locate the diagonal block matrix.
4237 double* s_values = matrix_pt(block_row_i, block_row_i)->value();
4238 int* s_column_index =
4239 matrix_pt(block_row_i, block_row_i)->column_index();
4240 int* s_row_start = matrix_pt(block_row_i, block_row_i)->row_start();
4241 // int s_nrow_local =
4242 // matrix_pt(block_row_i,block_row_i)->nrow_local();
4243 int s_first_row = matrix_pt(block_row_i, block_row_i)->first_row();
4244
4245 // Get the diagonal value...
4246 double diagonal_value = 0;
4247 bool found = false;
4248 for (int j = s_row_start[local_row_i];
4249 j < s_row_start[local_row_i + 1] && !found;
4250 j++)
4251 {
4252 if (s_column_index[j] == int(local_row_i + s_first_row))
4253 {
4255 found = true;
4256 }
4257 }
4258
4259 // Check if the diagonal entry is found.
4260 if (!found)
4261 {
4262 std::ostringstream error_message;
4263 error_message << "The diagonal entry for the block(" << block_row_i
4264 << "," << block_row_i << ")\n"
4265 << "on local row " << local_row_i
4266 << " does not exist." << std::endl;
4267 throw OomphLibError(error_message.str(),
4270 }
4271
4272 // This is the disc.
4274
4275 // Now we have to check if the diagonal entry is
4276 // on the left or right side of zero.
4277 if (diagonal_value > 0)
4278 {
4281 }
4282 else
4283 {
4286 }
4287 } // Loop through local row (of all block column)
4288 } // Loop through block row
4289
4290 // if this vector is distributed and on multiple processors then gather
4291#ifdef OOMPH_HAS_MPI
4293 if (matrix_pt(0, 0)->distributed() && comm_pt->nproc() > 1)
4294 {
4295 if (extreme_disc > 0)
4296 {
4299 1,
4300 MPI_DOUBLE,
4301 MPI_MAX,
4302 comm_pt->mpi_comm());
4303 }
4304 else
4305 {
4308 1,
4309 MPI_DOUBLE,
4310 MPI_MIN,
4311 comm_pt->mpi_comm());
4312 }
4313 }
4315#endif
4316
4317 // and return
4318 return extreme_disc;
4319 }
4320
4321 //============================================================================
4322 /// Concatenate CRDoubleMatrix matrices.
4323 /// The in matrices are concatenated such that the block structure of the
4324 /// in matrices are preserved in the result matrix. Communication between
4325 /// processors is required. If the block structure of the sub matrices does
4326 /// not need to be preserved, consider using
4327 /// CRDoubleMatrixHelpers::concatenate_without_communication(...).
4328 ///
4329 /// The matrix manipulation functions
4330 /// CRDoubleMatrixHelpers::concatenate(...) and
4331 /// CRDoubleMatrixHelpers::concatenate_without_communication(...)
4332 /// are analogous to the Vector manipulation functions
4333 /// DoubleVectorHelpers::concatenate(...) and
4334 /// DoubleVectorHelpers::concatenate_without_communication(...).
4335 /// Please look at the DoubleVector functions for an illustration of the
4336 /// differences between concatenate(...) and
4337 /// concatenate_without_communication(...).
4338 ///
4339 /// Distribution of the result matrix:
4340 /// If the result matrix does not have a distribution built, then it will be
4341 /// given a uniform row distribution. Otherwise we use the existing
4342 /// distribution. This gives the user the ability to define their own
4343 /// distribution, or save computing power if a distribution has
4344 /// been pre-built.
4345 ///
4346 /// NOTE: ALL the matrices pointed to by matrix_pt has to be built. This is
4347 /// not the case with concatenate_without_communication(...)
4348 //============================================================================
4351 {
4352 // The number of block rows and block columns.
4353 unsigned matrix_nrow = matrix_pt.nrow();
4354 unsigned matrix_ncol = matrix_pt.ncol();
4355
4356 // PARANOID checks involving only the in matrices.
4357#ifdef PARANOID
4358 // Are there matrices to concatenate?
4359 if (matrix_nrow == 0)
4360 {
4361 std::ostringstream error_message;
4362 error_message << "There are no matrices to concatenate.\n";
4363 throw OomphLibError(error_message.str(),
4366 }
4367
4368 // Does this matrix need concatenating?
4369 if ((matrix_nrow == 1) && (matrix_ncol == 1))
4370 {
4371 std::ostringstream warning_message;
4372 warning_message << "There is only one matrix to concatenate...\n"
4373 << "This does not require concatenating...\n";
4377 }
4378
4379 // Are all sub matrices built?
4380 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
4381 {
4382 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
4383 {
4384 if (!(matrix_pt(block_row_i, block_col_i)->built()))
4385 {
4386 std::ostringstream error_message;
4387 error_message << "The sub matrix (" << block_row_i << ","
4388 << block_col_i << ")\n"
4389 << "is not built. \n";
4390 throw OomphLibError(error_message.str(),
4393 }
4394 }
4395 }
4396
4397 // Do all dimensions of sub matrices "make sense"?
4398 // Compare the number of rows of each block matrix in a block row.
4399 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
4400 {
4401 // Use the first column to compare against the rest.
4402 unsigned long current_block_nrow = matrix_pt(block_row_i, 0)->nrow();
4403
4404 // Compare against columns 1 to matrix_ncol - 1
4405 for (unsigned block_col_i = 1; block_col_i < matrix_ncol; block_col_i++)
4406 {
4407 // Get the nrow for this sub block.
4408 unsigned long subblock_nrow =
4409 matrix_pt(block_row_i, block_col_i)->nrow();
4410
4412 {
4413 std::ostringstream error_message;
4414 error_message << "The sub matrix (" << block_row_i << ","
4415 << block_col_i << ")\n"
4416 << "requires nrow = " << current_block_nrow
4417 << ", but has nrow = " << subblock_nrow << ".\n";
4418 throw OomphLibError(error_message.str(),
4421 }
4422 }
4423 }
4424
4425 // Compare the number of columns of each block matrix in a block column.
4426 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
4427 {
4428 // Use the first row to compare against the rest.
4429 unsigned long current_block_ncol = matrix_pt(0, block_col_i)->ncol();
4430
4431 // Compare against rows 1 to matrix_nrow - 1
4432 for (unsigned block_row_i = 1; block_row_i < matrix_nrow; block_row_i++)
4433 {
4434 // Get the ncol for this sub block.
4435 unsigned long subblock_ncol =
4436 matrix_pt(block_row_i, block_col_i)->ncol();
4437
4439 {
4440 std::ostringstream error_message;
4441 error_message << "The sub matrix (" << block_row_i << ","
4442 << block_col_i << ")\n"
4443 << "requires ncol = " << current_block_ncol
4444 << ", but has ncol = " << subblock_ncol << ".\n";
4445 throw OomphLibError(error_message.str(),
4448 }
4449 }
4450 }
4451#endif
4452
4453 // The communicator pointer from block (0,0)
4454 const OomphCommunicator* const comm_pt =
4455 matrix_pt(0, 0)->distribution_pt()->communicator_pt();
4456
4457 // Check if the block (0,0) is distributed or not.
4458 bool distributed = matrix_pt(0, 0)->distributed();
4459
4460 // If the result matrix does not have a distribution, we create a uniform
4461 // distribution.
4462 if (!result_matrix.distribution_pt()->built())
4463 {
4464 // Sum of sub matrix nrow. We use the first column.
4465 unsigned tmp_nrow = 0;
4466 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
4467 {
4468 tmp_nrow += matrix_pt(block_row_i, 0)->nrow();
4469 }
4470
4472 comm_pt, tmp_nrow, distributed);
4473
4475 }
4476 else
4477 // A distribution is supplied for the result matrix.
4478 {
4479#ifdef PARANOID
4480 // Check if the sum of the nrow from the sub matrices is the same as the
4481 // the nrow from the result matrix.
4482
4483 // Sum of sub matrix nrow. We use the first column.
4484 unsigned tmp_nrow = 0;
4485 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
4486 {
4487 tmp_nrow += matrix_pt(block_row_i, 0)->nrow();
4488 }
4489
4490 if (tmp_nrow != result_matrix.nrow())
4491 {
4492 std::ostringstream error_message;
4493 error_message << "The total number of rows from the matrices to\n"
4494 << "concatenate does not match the nrow from the\n"
4495 << "result matrix\n";
4496 throw OomphLibError(error_message.str(),
4499 }
4500#endif
4501 }
4502
4503#ifdef PARANOID
4504
4505 // Are all the communicators the same?
4506 // Compare the communicator for sub matrices (against the result matrix).
4507 {
4509 *(result_matrix.distribution_pt()->communicator_pt());
4510
4511 // Are all communicator pointers the same?
4512 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
4513 {
4514 for (unsigned block_col_i = 0; block_col_i < matrix_ncol;
4515 block_col_i++)
4516 {
4518 *(matrix_pt(block_row_i, block_col_i)
4519 ->distribution_pt()
4520 ->communicator_pt());
4521
4523 {
4524 std::ostringstream error_message;
4525 error_message << "The OomphCommunicator of the sub matrix ("
4526 << block_row_i << "," << block_col_i << ")\n"
4527 << "does not have the same communicator as the "
4528 "result matrix. \n";
4529 throw OomphLibError(error_message.str(),
4532 }
4533 }
4534 }
4535 }
4536
4537 // Are all the distributed boolean the same? This only applies if we have
4538 // more than one processor. If there is only one processor, then it does
4539 // not matter if it is distributed or not - they are conceptually the
4540 // same.
4541 if (comm_pt->nproc() != 1)
4542 {
4543 // Compare distributed for sub matrices (against the result matrix).
4544 const bool res_distributed = result_matrix.distributed();
4545
4546 // Loop over all sub blocks.
4547 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
4548 {
4549 for (unsigned block_col_i = 0; block_col_i < matrix_ncol;
4550 block_col_i++)
4551 {
4552 const bool another_distributed =
4553 matrix_pt(block_row_i, block_col_i)->distributed();
4554
4556 {
4557 std::ostringstream error_message;
4558 error_message << "The distributed boolean of the sub matrix ("
4559 << block_row_i << "," << block_col_i << ")\n"
4560 << "is not the same as the result matrix. \n";
4561 throw OomphLibError(error_message.str(),
4564 }
4565 }
4566 }
4567 }
4568#endif
4569
4570
4571 // Get the number of columns up to each block for offset
4572 // in calculating the result column indices.
4573 // Since the number of columns in each block column is the same,
4574 // we only loop through the first block row (row zero).
4576
4577 // Also compute the total number of columns to build the resulting matrix.
4578 unsigned long res_ncol = 0;
4579
4580 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
4581 {
4583 res_ncol += matrix_pt(0, block_col_i)->ncol();
4584 }
4585
4586 // We begin the process of extracting and ordering the values,
4587 // column_indices and row_start of all the sub blocks.
4588 if ((comm_pt->nproc() == 1) || !distributed)
4589 // Serial version of the code.
4590 {
4591 // Get the total number of non zero entries so we can reserve storage
4592 // for the values and column_indices vectors.
4593 unsigned long res_nnz = 0;
4594 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
4595 {
4596 for (unsigned block_col_i = 0; block_col_i < matrix_ncol;
4597 block_col_i++)
4598 {
4599 res_nnz += matrix_pt(block_row_i, block_col_i)->nnz();
4600 }
4601 }
4602
4603 // Declare the vectors required to build a CRDoubleMatrix
4607
4608 // Reserve space for the vectors.
4609 res_values.reserve(res_nnz);
4610 res_column_indices.reserve(res_nnz);
4611 res_row_start.reserve(result_matrix.nrow() + 1);
4612
4613 // Now we fill in the data.
4614
4615 // Running sum of nnz per row.
4616 int nnz_running_sum = 0;
4617
4618 // Loop through the block rows.
4619 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
4620 {
4621 // Get the number of rows in this block row, from the first block.
4622 unsigned long block_row_nrow = matrix_pt(block_row_i, 0)->nrow();
4623
4624 // Loop through the number of rows in this block row
4625 for (unsigned row_i = 0; row_i < block_row_nrow; row_i++)
4626 {
4627 // The row start is the nnz at the start of the row.
4628 res_row_start.push_back(nnz_running_sum);
4629
4630 // Loop through the block columns
4631 for (unsigned block_col_i = 0; block_col_i < matrix_ncol;
4632 block_col_i++)
4633 {
4634 // Get the current block.
4636 matrix_pt(block_row_i, block_col_i);
4637
4638 // Get the values, column_indices and row_start for this block.
4639 double* current_block_values = current_block_pt->value();
4641 current_block_pt->column_index();
4642 int* current_block_row_start = current_block_pt->row_start();
4643
4646 val_i++)
4647 {
4649 res_column_indices.push_back(
4652 }
4653
4654 // Update the running sum of nnz per row
4657 } // for block cols
4658 } // for rows
4659 } // for block rows
4660
4661 // Fill in the last row start
4662 res_row_start.push_back(res_nnz);
4663
4664 // Build the matrix
4665 result_matrix.build(
4667 }
4668 // Otherwise we are dealing with a distributed matrix.
4669 else
4670 {
4671#ifdef OOMPH_HAS_MPI
4672
4673 // Flag to enable timing. This is for debugging
4674 // and/or testing purposes only.
4675 bool enable_timing = false;
4676
4677 // Get the number of processors
4678 unsigned nproc = comm_pt->nproc();
4679
4680 // My rank
4681 unsigned my_rank = comm_pt->my_rank();
4682
4683 // Storage for the data (per processor) to send.
4686
4687 // The sum of the nrow for the sub blocks (so far). This is used as an
4688 // offset to calculate the global equation number in the result matrix.
4689 unsigned long sum_of_block_nrow = 0;
4690
4691 double t_prep_data_start;
4692 if (enable_timing)
4693 {
4695 }
4696
4697 // Get the pointer to the result distribution, for convenience...
4699 result_matrix.distribution_pt();
4700
4701 // loop over the sub blocks to calculate the global_eqn, get the values
4702 // and column indices.
4703 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
4704 {
4705 // Get the number of local rows in this block_row from the first
4706 // block.
4707 unsigned current_block_nrow_local =
4708 matrix_pt(block_row_i, 0)->nrow_local();
4709
4710 // Get the first_row for this block_row
4712 matrix_pt(block_row_i, 0)->first_row();
4713
4714 // Loop through the number of local rows
4715 for (unsigned sub_local_eqn = 0;
4717 sub_local_eqn++)
4718 {
4719 // Calculate the corresponding (res_global_eqn) equation number
4720 // for this local row number in this block.
4721 unsigned long res_global_eqn =
4723
4724 // Get the processor that this global row belongs to.
4725 // The rank_of_global_row(...) function loops through all the
4726 // processors and does two unsigned comparisons. Since we have to do
4727 // this for every row, it may be better to store a list mapping for
4728 // very large number of processors.
4729 unsigned res_p =
4730 res_distribution_pt->rank_of_global_row(res_global_eqn);
4731
4732 // With the res_p, we get the res_first_row to
4733 // work out the res_local_eqn
4734 unsigned res_first_row = res_distribution_pt->first_row(res_p);
4736
4737 // Loop through the block columns, calculate the nnz. This is used
4738 // to reserve space for the value and column_indices Vectors.
4739 unsigned long current_row_nnz = 0;
4740 for (unsigned block_col_i = 0; block_col_i < matrix_ncol;
4741 block_col_i++)
4742 {
4743 // Get the row_start
4745 matrix_pt(block_row_i, block_col_i)->row_start();
4746
4747 // Update the nnz for this row.
4750 } // for block column, get nnz.
4751
4752 // Reserve space for efficiency.
4753 // unsigned capacity_in_res_p_vec
4754 // = column_indices_to_send[res_p].capacity();
4755
4756 // Reserve memory for nnz+2, since we need to store the
4757 // res_local_eqn and nnz as well as the data (values/column
4758 // indices). Note: The two reserve functions are called per row. If
4759 // the matrix is very sparse (just a few elements per row), it will
4760 // be more efficient to not reserve and let the STL vector handle
4761 // this. On average, this implementation is more efficient.
4762 // column_indices_to_send[res_p].reserve(capacity_in_res_p_vec
4763 // + current_row_nnz+2);
4764 // values_to_send[res_p].reserve(capacity_in_res_p_vec
4765 // + current_row_nnz+2);
4766
4767 // Push back the res_local_eqn and nnz
4772
4773 // Loop through the block columns again and get the values
4774 // and column_indices
4775 for (unsigned block_col_i = 0; block_col_i < matrix_ncol;
4776 block_col_i++)
4777 {
4778 // Cache the pointer to the current block for convenience.
4780 matrix_pt(block_row_i, block_col_i);
4781
4782 // Values, column indices and row_start for the current block.
4783 double* current_block_values = current_block_pt->value();
4785 current_block_pt->column_index();
4786 int* current_block_row_start = current_block_pt->row_start();
4787
4788 // Loop though the values and column_indices
4791 val_i++)
4792 {
4793 // Push back the value.
4795
4796 // Push back the (offset) column index.
4797 column_indices_to_send[res_p].push_back(
4800 } // for block columns
4801 } // for block column, get values and column_indices.
4802 } // for sub_local_eqn
4803
4804 // update the sum_of_block_nrow
4805 sum_of_block_nrow += matrix_pt(block_row_i, 0)->nrow();
4806
4807 } // for block_row
4808
4809 if (enable_timing)
4810 {
4813 oomph_info << "Time for prep data: " << t_prep_data_time << std::endl;
4814 }
4815
4816 // Prepare to send data!
4817
4818 // Storage for the number of data to be sent to each processor.
4820
4821 // Storage for all the values/column indices to be sent
4822 // to each processor.
4825
4826 // Storage location within send_values_data
4827 // (and send_column_indices_data) for data to be sent to each processor.
4829
4830 double t_total_ndata_start;
4832
4833 // Get the total amount of data which needs to be sent, so we can
4834 // reserve space for it.
4835 unsigned total_ndata = 0;
4836 for (unsigned rank = 0; rank < nproc; rank++)
4837 {
4838 if (rank != my_rank)
4839 {
4841 }
4842 }
4843
4844 if (enable_timing)
4845 {
4847 double t_total_ndata_time =
4849 oomph_info << "Time for total_ndata: " << t_total_ndata_time
4850 << std::endl;
4851 }
4852
4853 double t_flat_pack_start;
4855
4856 // Now we don't have to re-allocate data/memory when push_back is
4857 // called. Nb. Using push_back without reserving memory may cause
4858 // multiple re-allocation behind the scenes, this is expensive.
4861
4862 // Loop over all the processors to "flat pack" the data for sending.
4863 for (unsigned rank = 0; rank < nproc; rank++)
4864 {
4865 // Set the offset for the current processor
4866 // This only has to be done once for both values and column indices.
4868
4869 // Don't bother to do anything if
4870 // the processor in the loop is the current processor.
4871 if (rank != my_rank)
4872 {
4873 // Put the values into the send data vector.
4874 // n_data is the same for both values and column indices.
4875 unsigned n_data = values_to_send[rank].size();
4876 for (unsigned j = 0; j < n_data; j++)
4877 {
4879 send_column_indices_data.push_back(
4881 } // for
4882 } // if rank != my_rank
4883
4884 // Find the number of data to be added to the vector.
4885 // send_n is the same for both values and column indices.
4887 } // loop over processors
4888
4889 if (enable_timing)
4890 {
4893 oomph_info << "t_flat_pack_time: " << t_flat_pack_time << std::endl;
4894 }
4895
4896 double t_sendn_start;
4898
4899 // Strorage for the number of data to be received from each processor
4901
4902 MPI_Alltoall(&send_n[0],
4903 1,
4904 MPI_INT,
4905 &receive_n[0],
4906 1,
4907 MPI_INT,
4908 comm_pt->mpi_comm());
4909
4910 if (enable_timing)
4911 {
4914 oomph_info << "t_sendn_time: " << t_sendn_time << std::endl;
4915 }
4916
4917
4918 // Prepare the data to be received
4919 // by working out the displacement from the received data
4920 // receive_displacement is the same for both values and column indices.
4922 int receive_data_count = 0;
4923 for (unsigned rank = 0; rank < nproc; rank++)
4924 {
4927 }
4928
4929 // Now resize the receive buffer for all data from all processors.
4930 // Make sure that it has a size of at least one.
4931 if (receive_data_count == 0)
4932 {
4934 }
4937
4938 // Make sure that the send buffer has size at least one
4939 // so that we don't get a segmentation fault.
4940 if (send_values_data.size() == 0)
4941 {
4942 send_values_data.resize(1);
4943 }
4944
4945 double t_send_data_start;
4947
4948 // Now send the data between all processors
4950 &send_n[0],
4952 MPI_DOUBLE,
4954 &receive_n[0],
4956 MPI_DOUBLE,
4957 comm_pt->mpi_comm());
4958
4959 // Now send the data between all processors
4961 &send_n[0],
4965 &receive_n[0],
4968 comm_pt->mpi_comm());
4969
4970 if (enable_timing)
4971 {
4974 oomph_info << "t_send_data_time: " << t_send_data_time << std::endl;
4975 }
4976
4977 // All the rows for this processor are stored in:
4978 // from other processors:
4979 // receive_column_indices_data and receive_values_data
4980 // from this processor:
4981 // column_indices_to_send[my_rank] and values_to_send[my_rank]
4982 //
4983 // They are in some order determined by the distribution.
4984 // We need to re-arrange them. To do this, we do some pre-processing.
4985
4986 // nrow_local for this processor.
4987 unsigned res_nrow_local = res_distribution_pt->nrow_local();
4988
4989 // Per row, store:
4990 // 1) where this row came from, 0 - this proc, 1 - other procs.
4991 // 2) the nnz,
4992 // 3) the offset - where the values/columns in the receive data vectors
4993 // begins. This is different from the offset of where
4994 // the data from a certain processor starts.
4996 Vector<unsigned>(3, 0));
4997
4998 // Store the local nnz so we can reserve space for
4999 // the values and column indices.
5000 unsigned long res_nnz_local = 0;
5001
5002 double t_locations_start;
5004
5005 // Loop through the data currently on this processor.
5006 unsigned location_i = 0;
5010 {
5011 unsigned current_local_eqn =
5013
5015
5016 // No need to fill [*][0] with 0 since it is already initialised to 0.
5017
5018 // Store the nnz.
5020
5021 // Also increment the res_local_nnz
5023
5024 // Store the offset.
5026
5027 // Update the location_i so it starts at the next row.
5029 }
5030
5031 // Loop through the data from different processors.
5032
5033 // Check to see if data has been received.
5034 bool data_has_been_received = false;
5035 unsigned send_rank = 0;
5036 while (send_rank < nproc)
5037 {
5038 if (receive_n[send_rank] > 0)
5039 {
5041 break;
5042 }
5043 send_rank++;
5044 }
5045
5046 location_i = 0; // start at 0.
5048 {
5052 {
5053 unsigned current_local_eqn =
5056
5057 // These comes from other processors.
5059
5060 // Store the nnz.
5062
5063 // Also increment the res_local_nnz
5065
5066 // Store the offset.
5068
5069 // Update the location_i so it starts at the next row.
5071 }
5072 }
5073
5074 if (enable_timing)
5075 {
5078 oomph_info << "t_locations_time: " << t_locations_time << std::endl;
5079 }
5080
5081 double t_fillvecs_start;
5083
5084 // Now loop through the locations and store the values
5085 // the column indices in the correct order.
5089
5091 res_values.reserve(res_nnz_local);
5092 res_row_start.reserve(res_nrow_local + 1);
5093
5094 // Running sum of nnz for the row_start. Must be int because
5095 // res_row_start is templated with int.
5096 int nnz_running_sum = 0;
5097
5098 // Now insert the rows.
5099 for (unsigned local_row_i = 0; local_row_i < res_nrow_local;
5100 local_row_i++)
5101 {
5102 // Fill the res_row_start with the nnz so far.
5103 res_row_start.push_back(nnz_running_sum);
5104
5107
5109
5111
5113 {
5114 // Insert range [offset, offset+nnz) from
5115 // receive_column_indices_data and receive_values_data into
5116 // res_column_indices and res_values respectively.
5117 res_column_indices.insert(
5118 res_column_indices.end(),
5121
5122 res_values.insert(res_values.end(),
5125 row_i_nnz);
5126 }
5127 else
5128 {
5134
5135 res_values.insert(res_values.end(),
5138 row_i_nnz);
5139 }
5140
5141 // Update the running sum of nnz
5143 }
5144
5145 // Insert the last row_start value
5146 res_row_start.push_back(res_nnz_local);
5147
5148 if (enable_timing)
5149 {
5152 oomph_info << "t_fillvecs_time: " << t_fillvecs_time << std::endl;
5153 }
5154
5155 double t_buildres_start;
5157
5158 // build the matrix.
5159 result_matrix.build(
5161
5162 if (enable_timing)
5163 {
5166 oomph_info << "t_buildres_time: " << t_buildres_time << std::endl;
5167 }
5168 // */
5169#endif
5170 }
5171 }
5172
5173 //============================================================================
5174 /// Concatenate CRDoubleMatrix matrices.
5175 ///
5176 /// The Vector row_distribution_pt contains the LinearAlgebraDistribution
5177 /// of each block row.
5178 /// The Vector col_distribution_pt contains the LinearAlgebraDistribution
5179 /// of each block column.
5180 /// The DenseMatrix matrix_pt contains pointers to the CRDoubleMatrices
5181 /// to concatenate.
5182 /// The CRDoubleMatrix result_matrix is the result matrix.
5183 ///
5184 /// The result matrix is a permutation of the sub matrices such that the
5185 /// data stays on the same processor when the result matrix is built, there
5186 /// is no communication between processors. Thus the block structure of the
5187 /// sub matrices are NOT preserved in the result matrix. The rows are
5188 /// block-permuted, defined by the concatenation of the distributions in
5189 /// row_distribution_pt. Similarly, the columns are block-permuted, defined
5190 /// by the concatenation of the distributions in col_distribution_pt. For
5191 /// more details on the block-permutation, see
5192 /// LinearAlgebraDistributionHelpers::concatenate(...).
5193 ///
5194 /// If one wishes to preserve the block structure of the sub matrices in the
5195 /// result matrix, consider using CRDoubleMatrixHelpers::concatenate(...),
5196 /// which uses communication between processors to ensure that the block
5197 /// structure of the sub matrices are preserved.
5198 ///
5199 /// The matrix manipulation functions
5200 /// CRDoubleMatrixHelpers::concatenate(...) and
5201 /// CRDoubleMatrixHelpers::concatenate_without_communication(...)
5202 /// are analogous to the Vector manipulation functions
5203 /// DoubleVectorHelpers::concatenate(...) and
5204 /// DoubleVectorHelpers::concatenate_without_communication(...).
5205 /// Please look at the DoubleVector functions for an illustration of the
5206 /// differences between concatenate(...) and
5207 /// concatenate_without_communication(...).
5208 ///
5209 /// Distribution of the result matrix:
5210 /// If the result matrix does not have a distribution built, then it will be
5211 /// given a distribution built from the concatenation of the distributions
5212 /// from row_distribution_pt, see
5213 /// LinearAlgebraDistributionHelpers::concatenate(...) for more detail.
5214 /// Otherwise we use the existing distribution.
5215 /// If there is an existing distribution then it must be the same as the
5216 /// distribution from the concatenation of row distributions as described
5217 /// above.
5218 /// Why don't we always compute the distribution "on the fly"?
5219 /// Because a non-uniform distribution requires communication.
5220 /// All block preconditioner distributions are concatenations of the
5221 /// distributions of the individual blocks.
5222 //============================================================================
5226 const DenseMatrix<CRDoubleMatrix*>& matrix_pt,
5228 {
5229 // The number of block rows and block columns.
5230 unsigned matrix_nrow = matrix_pt.nrow();
5231 unsigned matrix_ncol = matrix_pt.ncol();
5232
5233 // PARANOID checks involving in matrices and block_distribution only.
5234 // PARANOID checks involving the result matrix will come later since
5235 // we have to create the result matrix distribution from the in
5236 // distribution if it does not already exist.
5237#ifdef PARANOID
5238
5239 // Are there matrices to concatenate?
5240 if (matrix_nrow == 0 || matrix_ncol == 0)
5241 {
5242 std::ostringstream error_message;
5243 error_message << "There are no matrices to concatenate.\n";
5244 throw OomphLibError(error_message.str(),
5247 }
5248
5249 // Does this matrix need concatenating?
5250 if ((matrix_nrow == 1) && (matrix_ncol == 1))
5251 {
5252 std::ostringstream warning_message;
5253 warning_message << "There is only one matrix to concatenate...\n"
5254 << "This does not require concatenating...\n";
5258 }
5259
5260
5261 // The distribution for each block row is stored in row_distribution_pt.
5262 // So the number of distributions in row_distribution_pt must be the
5263 // same as matrix_nrow.
5265 {
5266 std::ostringstream error_message;
5267 error_message << "The number of row distributions must be the same as\n"
5268 << "the number of block rows.";
5269 throw OomphLibError(error_message.str(),
5272 }
5273
5274 // The number of distributions for the columns must match the number of
5275 // block columns.
5277 {
5278 std::ostringstream error_message;
5279 error_message
5280 << "The number of column distributions must be the same as\n"
5281 << "the number of block columns.";
5282 throw OomphLibError(error_message.str(),
5285 }
5286
5287 // Check that all pointers in row_distribution_pt is not null.
5288 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
5289 {
5291 {
5292 std::ostringstream error_message;
5293 error_message << "The row distribution pointer in position "
5294 << block_row_i << " is null.\n";
5295 throw OomphLibError(error_message.str(),
5298 }
5299 }
5300
5301 // Check that all pointers in row_distribution_pt is not null.
5302 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5303 {
5305 {
5306 std::ostringstream error_message;
5307 error_message << "The column distribution pointer in position "
5308 << block_col_i << " is null.\n";
5309 throw OomphLibError(error_message.str(),
5312 }
5313 }
5314
5315 // Check that all distributions are built.
5316 // First the row distributions
5317 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
5318 {
5319 if (!row_distribution_pt[block_row_i]->built())
5320 {
5321 std::ostringstream error_message;
5322 error_message << "The distribution pointer in position "
5323 << block_row_i << " is not built.\n";
5324 throw OomphLibError(error_message.str(),
5327 }
5328 }
5329 // Now the column distributions
5330 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5331 {
5332 if (!col_distribution_pt[block_col_i]->built())
5333 {
5334 std::ostringstream error_message;
5335 error_message << "The distribution pointer in position "
5336 << block_col_i << " is not built.\n";
5337 throw OomphLibError(error_message.str(),
5340 }
5341 }
5342
5343 // Check that all communicators in row_distribution_pt are the same.
5345 *(row_distribution_pt[0]->communicator_pt());
5346
5347 for (unsigned block_row_i = 1; block_row_i < matrix_nrow; block_row_i++)
5348 {
5350 *(row_distribution_pt[block_row_i]->communicator_pt());
5351
5353 {
5354 std::ostringstream error_message;
5355 error_message
5356 << "The communicator from the row distribution in position "
5357 << block_row_i << " is not the same as the first "
5358 << "communicator from row_distribution_pt";
5359 throw OomphLibError(error_message.str(),
5362 }
5363 }
5364
5365 // Check that all communicators in col_distribution_pt are the same as the
5366 // first row communicator from above.
5367 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5368 {
5370 *(col_distribution_pt[block_col_i]->communicator_pt());
5371
5373 {
5374 std::ostringstream error_message;
5375 error_message
5376 << "The communicator from the col distribution in position "
5377 << block_col_i << " is not the same as the first "
5378 << "communicator from row_distribution_pt";
5379 throw OomphLibError(error_message.str(),
5382 }
5383 }
5384
5385 // Are all sub matrices built? If the matrix_pt is not null, make sure
5386 // that it is built.
5387 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
5388 {
5389 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5390 {
5391 if (matrix_pt(block_row_i, block_col_i) != 0 &&
5392 !(matrix_pt(block_row_i, block_col_i)->built()))
5393 {
5394 std::ostringstream error_message;
5395 error_message << "The sub matrix_pt(" << block_row_i << ","
5396 << block_col_i << ")\n"
5397 << "is not built.\n";
5398 throw OomphLibError(error_message.str(),
5401 }
5402 }
5403 }
5404
5405 // For the matrices which are built, do they have the same communicator as
5406 // the first communicator from row_distribution_pt?
5407 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
5408 {
5409 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5410 {
5411 if (matrix_pt(block_row_i, block_col_i) != 0)
5412 {
5414 *(matrix_pt(block_row_i, block_col_i)
5415 ->distribution_pt()
5416 ->communicator_pt());
5418 {
5419 std::ostringstream error_message;
5420 error_message
5421 << "The sub matrix_pt(" << block_row_i << "," << block_col_i
5422 << ")\n"
5423 << "does not have the same communicator pointer as those in\n"
5424 << "(row|col)_distribution_pt.\n";
5425 throw OomphLibError(error_message.str(),
5428 }
5429 }
5430 }
5431 }
5432
5433 // Do all dimensions of sub matrices "make sense"?
5434 // Compare the number of rows of each block matrix in a block row.
5435 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
5436 {
5437 // Use the first column to compare against the rest.
5438 unsigned long current_block_nrow =
5440
5441 // Compare against columns 0 to matrix_ncol - 1
5442 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5443 {
5444 // Perform the check if the matrix_pt is not null.
5445 if (matrix_pt(block_row_i, block_col_i) != 0)
5446 {
5447 // Get the nrow for this sub block.
5448 unsigned long subblock_nrow =
5449 matrix_pt(block_row_i, block_col_i)->nrow();
5450
5452 {
5453 std::ostringstream error_message;
5454 error_message << "The sub matrix (" << block_row_i << ","
5455 << block_col_i << ")\n"
5456 << "requires nrow = " << current_block_nrow
5457 << ", but has nrow = " << subblock_nrow << ".\n"
5458 << "Either the row_distribution_pt is incorrect or "
5459 << "the sub matrices are incorrect.\n";
5460 throw OomphLibError(error_message.str(),
5463 }
5464 }
5465 }
5466 }
5467
5468 // Compare the number of columns of each block matrix in a block column.
5469 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5470 {
5471 // Get the current block ncol from the linear algebra distribution.
5472 // Note that we assume that the dimensions are symmetrical.
5474
5475 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
5476 {
5477 if (matrix_pt(block_row_i, block_col_i) != 0)
5478 {
5479 // Get the ncol for this sub block.
5480 unsigned subblock_ncol =
5481 matrix_pt(block_row_i, block_col_i)->ncol();
5482
5484 {
5485 std::ostringstream error_message;
5486 error_message << "The sub matrix (" << block_row_i << ","
5487 << block_col_i << ")\n"
5488 << "requires ncol = " << current_block_ncol
5489 << ", but has ncol = " << subblock_ncol << ".\n"
5490 << "Either the col_distribution_pt is incorrect or "
5491 << "the sub matrices are incorrect.\n";
5492 throw OomphLibError(error_message.str(),
5495 }
5496 }
5497 }
5498 }
5499
5500 // Ensure that the distributions for all sub matrices in the same block
5501 // row are the same. This is because we permute the row across several
5502 // matrices.
5503
5504 // Loop through each block row.
5505 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
5506 {
5507 // Get the distribution from the first block in this row.
5510
5511 // Loop through the block columns
5512 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5513 {
5514 if (matrix_pt(block_row_i, block_col_i) != 0)
5515 {
5516 // Get the distribution for this block.
5518 matrix_pt(block_row_i, block_col_i)->distribution_pt();
5519
5520 // Ensure that the in matrices is a square block matrix.
5523 {
5524 std::ostringstream error_message;
5525 error_message
5526 << "Sub block(" << block_row_i << "," << block_col_i << ")"
5527 << "does not have the same distributoin as the first"
5528 << "block in this block row.\n"
5529 << "All distributions on a block row must be the same"
5530 << "for this function to concatenate matrices.\n";
5531 throw OomphLibError(error_message.str(),
5534 }
5535 }
5536 }
5537 }
5538#endif
5539
5540 // The communicator pointer from the first row_distribution_pt
5541 const OomphCommunicator* const comm_pt =
5542 row_distribution_pt[0]->communicator_pt();
5543
5544 // Renamed for so it makes more sense.
5545 unsigned nblock_row = matrix_nrow;
5546
5547 // If the result matrix does not have a distribution, then we concatenate
5548 // the sub matrix distributions.
5549 if (!result_matrix.distribution_pt()->built())
5550 {
5551 // The result distribution
5555
5557 }
5558 else
5559 // A distribution is supplied for the result matrix.
5560 {
5561#ifdef PARANOID
5562 // Check that the result distribution is a concatenation of the
5563 // distributions of the sub matrices.
5564
5566
5569
5570 if (*(result_matrix.distribution_pt()) != wanted_distribution)
5571 {
5572 std::ostringstream error_message;
5573 error_message
5574 << "The result distribution is not correct.\n"
5575 << "Please call the function without a result\n"
5576 << "distribution (clear the result matrix) or check the\n"
5577 << "distribution of the result matrix.\n"
5578 << "The result distribution must be the same as the one \n"
5579 << "created by\n"
5580 << "LinearAlgebraDistributionHelpers::concatenate(...)";
5581 throw OomphLibError(error_message.str(),
5584 }
5585#endif
5586 }
5587
5588 // The rest of the paranoid checks.
5589#ifdef PARANOID
5590
5591 // Make sure that the communicator from the result matrix is the same as
5592 // all the others. This test is redundant if this function created the
5593 // result matrix distribution, since then it is guaranteed that the
5594 // communicators are the same.
5595 {
5596 // Communicator from the result matrix.
5598 *(result_matrix.distribution_pt()->communicator_pt());
5599
5600 // Is the result communicator pointer the same as the others?
5601 // Since we have already tested the others, we only need to compare
5602 // against one of them. Say the first communicator from
5603 // row_distribution_pt.
5605 *(row_distribution_pt[0]->communicator_pt());
5606
5607 if (res_comm != first_comm)
5608 {
5609 std::ostringstream error_message;
5610 error_message << "The OomphCommunicator of the result matrix is not "
5611 "the same as the "
5612 << "others!";
5613 throw OomphLibError(error_message.str(),
5616 }
5617 }
5618
5619 // Are all the distributed boolean the same? This only applies if we have
5620 // more than one processor. If there is only one processor, then it does
5621 // not matter if it is distributed or not - they are conceptually the
5622 // same.
5623 if (comm_pt->nproc() != 1)
5624 {
5625 // Compare distributed for sub matrices (against the result matrix).
5626 const bool res_distributed = result_matrix.distributed();
5627
5628 // Loop over all sub blocks.
5629 for (unsigned block_row_i = 0; block_row_i < matrix_nrow; block_row_i++)
5630 {
5631 for (unsigned block_col_i = 0; block_col_i < matrix_ncol;
5632 block_col_i++)
5633 {
5634 if (matrix_pt(block_row_i, block_col_i) != 0)
5635 {
5636 const bool another_distributed =
5637 matrix_pt(block_row_i, block_col_i)->distributed();
5638
5640 {
5641 std::ostringstream error_message;
5642 error_message << "The distributed boolean of the sub matrix ("
5643 << block_row_i << "," << block_col_i << ")\n"
5644 << "is not the same as the result matrix. \n";
5645 throw OomphLibError(error_message.str(),
5648 }
5649 }
5650 }
5651 }
5652
5653 // Do this test for row_distribution_pt
5655 row_distribution_pt[0]->distributed();
5656
5657 for (unsigned block_row_i = 1; block_row_i < matrix_nrow; block_row_i++)
5658 {
5659 const bool another_distributed =
5660 row_distribution_pt[block_row_i]->distributed();
5661
5663 {
5664 std::ostringstream error_message;
5665 error_message
5666 << "The distributed boolean of row_distribution_pt["
5667 << block_row_i << "]\n"
5668 << "is not the same as the one from row_distribution_pt[0]. \n";
5669 throw OomphLibError(error_message.str(),
5672 }
5673 }
5674
5675 // Repeat for col_distribution_pt
5676 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5677 {
5678 const bool another_distributed =
5679 col_distribution_pt[block_col_i]->distributed();
5680
5682 {
5683 std::ostringstream error_message;
5684 error_message
5685 << "The distributed boolean of col_distribution_pt["
5686 << block_col_i << "]\n"
5687 << "is not the same as the one from row_distribution_pt[0]. \n";
5688 throw OomphLibError(error_message.str(),
5691 }
5692 }
5693 }
5694#endif
5695
5696 ////////////////// END OF PARANOID TESTS
5697 ///////////////////////////////////////
5698
5699 // The number of processors.
5700 unsigned nproc = comm_pt->nproc();
5701
5702 // Cache the result distribution pointer for convenience.
5704 result_matrix.distribution_pt();
5705
5706 // nrow_local for the result matrix
5707 unsigned res_nrow_local = res_distribution_pt->nrow_local();
5708
5709 // renamed for readability.
5710 unsigned nblock_col = matrix_ncol;
5711
5712 // construct the block offset
5713 // DenseMatrix<unsigned> col_offset(nproc,nblock_col,0);
5714 std::vector<std::vector<unsigned>> col_offset(
5715 nproc, std::vector<unsigned>(nblock_col));
5716 unsigned off = 0;
5717 for (unsigned proc_i = 0; proc_i < nproc; proc_i++)
5718 {
5719 for (unsigned block_i = 0; block_i < nblock_col; block_i++)
5720 {
5722 off += col_distribution_pt[block_i]->nrow_local(proc_i);
5723 }
5724 }
5725
5726 // Do some pre-processing for the processor number a global row number is
5727 // on. This is required when permuting the column entries.
5728 // We need to do this for each distribution, so we have a vector of
5729 // vectors. First index corresponds to the distribution, the second is
5730 // the processor number.
5731 std::vector<std::vector<unsigned>> p_for_rows(nblock_col,
5732 std::vector<unsigned>());
5733 // initialise 2D vector
5734 for (unsigned blocki = 0; blocki < nblock_col; blocki++)
5735 {
5736 int blockinrow = col_distribution_pt[blocki]->nrow();
5737 p_for_rows[blocki].resize(blockinrow);
5738 // FOR each global index in the block, work out the corresponding proc.
5739 for (int rowi = 0; rowi < blockinrow; rowi++)
5740 {
5741 unsigned p = 0;
5742 int b_first_row = col_distribution_pt[blocki]->first_row(p);
5743 int b_nrow_local = col_distribution_pt[blocki]->nrow_local(p);
5744
5746 {
5747 p++;
5748 b_first_row = col_distribution_pt[blocki]->first_row(p);
5749 b_nrow_local = col_distribution_pt[blocki]->nrow_local(p);
5750 }
5751 p_for_rows[blocki][rowi] = p;
5752 }
5753 }
5754
5755 // determine nnz of all blocks on this processor only.
5756 // This is used to create storage space.
5757 unsigned long res_nnz = 0;
5758 for (unsigned row_i = 0; row_i < nblock_row; row_i++)
5759 {
5760 for (unsigned col_i = 0; col_i < nblock_col; col_i++)
5761 {
5762 if (matrix_pt(row_i, col_i) != 0)
5763 {
5764 res_nnz += matrix_pt(row_i, col_i)->nnz();
5765 }
5766 }
5767 }
5768
5769 // My rank
5770 // unsigned my_rank = comm_pt->my_rank();
5771 // my_rank = my_rank;
5772
5773 // Turn the above into a string.
5774 // std::ostringstream myrankstream;
5775 // myrankstream << "THISDOESNOTHINGnp" << my_rank << std::endl;
5776 // std::string myrankstring = myrankstream.str();
5777
5778
5779 // CALLGRIND_ZERO_STATS;
5780 // CALLGRIND_START_INSTRUMENTATION;
5781
5782 // storage for the result matrix.
5783 int* res_row_start = new int[res_nrow_local + 1];
5784 int* res_column_index = new int[res_nnz];
5785 double* res_value = new double[res_nnz];
5786
5787 // initialise the zero-th entry
5788 res_row_start[0] = 0;
5789
5790 // loop over the block rows
5791 unsigned long res_i = 0; // index for the result matrix.
5792 unsigned long res_row_i = 0; // index for the row
5793 for (unsigned i = 0; i < nblock_row; i++)
5794 {
5795 // loop over the rows of the current block local rows.
5796 unsigned block_nrow = row_distribution_pt[i]->nrow_local();
5797 for (unsigned k = 0; k < block_nrow; k++)
5798 {
5799 // initialise res_row_start
5801
5802 // Loop over the block columns
5803 for (unsigned j = 0; j < nblock_col; j++)
5804 {
5805 // if block(i,j) pointer is not null then
5806 if (matrix_pt(i, j) != 0)
5807 {
5808 // get pointers for the elements in the current block
5809 int* b_row_start = matrix_pt(i, j)->row_start();
5810 int* b_column_index = matrix_pt(i, j)->column_index();
5811 double* b_value = matrix_pt(i, j)->value();
5812
5813 // memcpy( &dst[dstIdx], &src[srcIdx], numElementsToCopy * sizeof(
5814 // Element ) );
5815 // no ele to copy
5816 int numEleToCopy = b_row_start[k + 1] - b_row_start[k];
5819 numEleToCopy * sizeof(double));
5820 // Loop through the current local row.
5821 for (int l = b_row_start[k]; l < b_row_start[k + 1]; l++)
5822 {
5823 // if b_column_index[l] was a row index, what processor
5824 // would it be on
5825 // unsigned p = col_distribution_pt[j]
5826 // ->rank_of_global_row_map(b_column_index[l]);
5827 unsigned p = p_for_rows[j][b_column_index[l]];
5828
5829 int b_first_row = col_distribution_pt[j]->first_row(p);
5830 // int b_nrow_local =
5831 // col_distribution_pt[j]->nrow_local(p);
5832
5833 // while (b_column_index[l] < b_first_row ||
5834 // b_column_index[l] >=
5835 // b_nrow_local+b_first_row)
5836 // {
5837 // p++;
5838 // b_first_row =
5839 // col_distribution_pt[j]->first_row(p);
5840 // b_nrow_local =
5841 // col_distribution_pt[j]->nrow_local(p);
5842 // }
5843
5844 // determine the local equation number in the block j/processor
5845 // p "column block"
5847
5848 // add to the result matrix
5849 // res_value[res_i] = b_value[l];
5851 res_row_start[res_row_i + 1]++;
5852 res_i++;
5853 }
5854 }
5855 }
5856
5857 // increment the row pt
5858 res_row_i++;
5859 }
5860 }
5861 // CALLGRIND_STOP_INSTRUMENTATION;
5862 // CALLGRIND_DUMP_STATS_AT(myrankstring.c_str());
5863
5864
5865 // Get the number of columns of the result matrix.
5866 unsigned res_ncol = 0;
5867 for (unsigned block_col_i = 0; block_col_i < matrix_ncol; block_col_i++)
5868 {
5870 }
5871
5872 // Build the result matrix.
5873 result_matrix.build_without_copy(
5875 }
5876
5877
5878 //============================================================================
5879 /// Concatenate CRDoubleMatrix matrices.
5880 /// This calls the other concatenate_without_communication(...) function,
5881 /// passing block_distribution_pt as both the row_distribution_pt and
5882 /// col_distribution_pt. This should only be called for block square
5883 /// matrices.
5884 //============================================================================
5886 const Vector<LinearAlgebraDistribution*>& block_distribution_pt,
5887 const DenseMatrix<CRDoubleMatrix*>& matrix_pt,
5889 {
5890#ifdef PARANOID
5891 // The number of block rows and block columns.
5892 unsigned matrix_nrow = matrix_pt.nrow();
5893 unsigned matrix_ncol = matrix_pt.ncol();
5894
5895 // Are there matrices to concatenate?
5896 if (matrix_nrow == 0)
5897 {
5898 std::ostringstream error_message;
5899 error_message << "There are no matrices to concatenate.\n";
5900 throw OomphLibError(error_message.str(),
5903 }
5904
5905 // Ensure that the sub matrices is a square block matrix.
5906 if (matrix_nrow != matrix_ncol)
5907 {
5908 std::ostringstream error_message;
5909 error_message
5910 << "The number of block rows and block columns\n"
5911 << "must be the same. Otherwise, call the other\n"
5912 << "concatenate_without_communication function, passing in\n"
5913 << "a Vector of distributions describing how to permute the\n"
5914 << "columns.";
5915 throw OomphLibError(error_message.str(),
5918 }
5919#endif
5920
5922 block_distribution_pt, block_distribution_pt, matrix_pt, result_matrix);
5923 }
5924
5925 } // namespace CRDoubleMatrixHelpers
5926
5927} // namespace oomph
cstr elem_len * i
Definition cfortran.h:603
A class for compressed column matrices that store doubles.
Definition matrices.h:2791
void multiply_transpose(const DoubleVector &x, DoubleVector &soln) const
Multiply the transposed matrix by the vector x: soln=A^T x.
Definition matrices.cc:715
virtual void lubksub(DoubleVector &rhs)
LU back solve for given RHS.
Definition matrices.cc:614
void matrix_reduction(const double &alpha, CCDoubleMatrix &reduced_matrix)
For every row, find the maximum absolute value of the entries in this row. Set all values that are le...
Definition matrices.cc:1149
virtual ~CCDoubleMatrix()
Destructor: Kill the LU factors if they have been setup.
Definition matrices.cc:597
unsigned long ncol() const
Return the number of columns of the matrix.
Definition matrices.h:2823
unsigned long nrow() const
Return the number of rows of the matrix.
Definition matrices.h:2817
CCDoubleMatrix()
Default constructor.
Definition matrices.cc:572
virtual void ludecompose()
LU decomposition using SuperLU.
Definition matrices.cc:606
void multiply(const DoubleVector &x, DoubleVector &soln) const
Multiply the matrix by the vector x: soln=Ax.
Definition matrices.cc:622
unsigned Matrix_matrix_multiply_method
Flag to determine which matrix-matrix multiplication method is used.
Definition matrices.h:2893
A class for compressed column matrices: a sparse matrix format The class is passed as the MATRIX_TYPE...
Definition matrices.h:2585
int * Column_start
Start index for column.
Definition matrices.h:2779
int * Row_index
Row index.
Definition matrices.h:2776
int * column_start()
Access to C-style column_start array.
Definition matrices.h:2692
void build(const Vector< double > &value, const Vector< int > &row_index, const Vector< int > &column_start, const unsigned long &n, const unsigned long &m)
Build matrix from compressed representation. Number of nonzero entries is read off from value,...
Definition matrices.h:3247
int * row_index()
Access to C-style row index array.
Definition matrices.h:2704
A class for compressed row matrices. This is a distributable object.
Definition matrices.h:888
void sort_entries()
Sorts the entries associated with each row of the matrix in the column index vector and the value vec...
Definition matrices.cc:1449
virtual ~CRDoubleMatrix()
Destructor.
Definition matrices.cc:1343
int * row_start()
Access to C-style row_start array.
Definition matrices.h:1060
struct oomph::CRDoubleMatrix::CRDoubleMatrixComparisonHelper Comparison_struct
void matrix_reduction(const double &alpha, CRDoubleMatrix &reduced_matrix)
For every row, find the maximum absolute value of the entries in this row. Set all values that are le...
Definition matrices.cc:2365
void multiply_transpose(const DoubleVector &x, DoubleVector &soln) const
Multiply the transposed matrix by the vector x: soln=A^T x.
Definition matrices.cc:1882
virtual void ludecompose()
LU decomposition using SuperLU if matrix is not distributed or distributed onto a single processor.
Definition matrices.cc:1728
unsigned long ncol() const
Return the number of columns of the matrix.
Definition matrices.h:1008
void multiply(const DoubleVector &x, DoubleVector &soln) const
Multiply the matrix by the vector x: soln=Ax.
Definition matrices.cc:1782
void add(const CRDoubleMatrix &matrix_in, CRDoubleMatrix &result_matrix) const
element-wise addition of this matrix with matrix_in.
Definition matrices.cc:3515
bool Built
Flag to indicate whether the matrix has been built - i.e. the distribution has been setup AND the mat...
Definition matrices.h:1253
Vector< int > Index_of_diagonal_entries
Vector whose i'th entry contains the index of the last entry below or on the diagonal of the i'th row...
Definition matrices.h:1238
double inf_norm() const
returns the inf-norm of this matrix
Definition matrices.cc:3412
void get_matrix_transpose(CRDoubleMatrix *result) const
Returns the transpose of this matrix.
Definition matrices.cc:3271
int * column_index()
Access to C-style column index array.
Definition matrices.h:1072
unsigned long nnz() const
Return the number of nonzero entries (the local nnz)
Definition matrices.h:1096
CRDoubleMatrix * global_matrix() const
if this matrix is distributed then a the equivalent global matrix is built using new and returned....
Definition matrices.cc:2431
void redistribute(const LinearAlgebraDistribution *const &dist_pt)
The contents of the matrix are redistributed to match the new distribution. In a non-MPI build this m...
Definition matrices.cc:2575
bool built() const
access function to the Built flag - indicates whether the matrix has been build - i....
Definition matrices.h:1210
void build_without_copy(const unsigned &ncol, const unsigned &nnz, double *value, int *column_index, int *row_start)
keeps the existing distribution and just matrix that is stored without copying the matrix data
Definition matrices.cc:1710
double * value()
Access to C-style value array.
Definition matrices.h:1084
unsigned long nrow() const
Return the number of rows of the matrix.
Definition matrices.h:1002
unsigned Serial_matrix_matrix_multiply_method
Flag to determine which matrix-matrix multiplication method is used (for serial (or global) matrices)
Definition matrices.h:1242
Vector< double > diagonal_entries() const
returns a Vector of diagonal entries of this matrix. This only works with square matrices....
Definition matrices.cc:3465
CRDoubleMatrix()
Default constructor.
Definition matrices.cc:1214
bool entries_are_sorted(const bool &doc_unordered_entries=false) const
Runs through the column index vector and checks if the entries follow the regular lexicographical ord...
Definition matrices.cc:1366
CRMatrix< double > CR_matrix
Storage for the Matrix in CR Format.
Definition matrices.h:1249
virtual void lubksub(DoubleVector &rhs)
LU back solve for given RHS.
Definition matrices.cc:1749
void build(const LinearAlgebraDistribution *distribution_pt, const unsigned &ncol, const Vector< double > &value, const Vector< int > &column_index, const Vector< int > &row_start)
build method: vector of values, vector of column indices, vector of row starts and number of rows and...
Definition matrices.cc:1672
void clean_up_memory()
Wipe matrix data and set all values to 0.
Definition matrices.h:3323
int * column_index()
Access to C-style column index array.
Definition matrices.h:797
void build(const Vector< T > &value, const Vector< int > &column_index, const Vector< int > &row_start, const unsigned long &n, const unsigned long &m)
Build matrix from compressed representation. Number of nonzero entries is read off from value,...
Definition matrices.h:3404
int * row_start()
Access to C-style row_start array.
Definition matrices.h:785
void build_without_copy(T *value, int *column_index, int *row_start, const unsigned long &nnz, const unsigned long &n, const unsigned long &m)
Function to build matrix from pointers to arrays which hold the row starts, column indices and non-ze...
Definition matrices.h:3354
T get_entry(const unsigned long &i, const unsigned long &j) const
Access function that will be called by the read-only round-bracket operator (const)
Definition matrices.h:748
Class of matrices containing doubles, and stored as a DenseMatrix<double>, but with solving functiona...
Definition matrices.h:1271
DenseDoubleMatrix()
Constructor, set the default linear solver.
Definition matrices.cc:139
virtual void lubksub(DoubleVector &rhs)
LU backsubstitution.
Definition matrices.cc:202
virtual ~DenseDoubleMatrix()
Destructor.
Definition matrices.cc:182
void matrix_reduction(const double &alpha, DenseDoubleMatrix &reduced_matrix)
For every row, find the maximum absolute value of the entries in this row. Set all values that are le...
Definition matrices.cc:481
virtual void ludecompose()
LU decomposition using DenseLU (default linea solver)
Definition matrices.cc:192
void multiply_transpose(const DoubleVector &x, DoubleVector &soln) const
Multiply the transposed matrix by the vector x: soln=A^T x.
Definition matrices.cc:385
void multiply(const DoubleVector &x, DoubleVector &soln) const
Multiply the matrix by the vector x: soln=Ax.
Definition matrices.cc:294
unsigned long nrow() const
Return the number of rows of the matrix.
Definition matrices.h:1295
unsigned long ncol() const
Return the number of columns of the matrix.
Definition matrices.h:1301
void eigenvalues_by_jacobi(Vector< double > &eigen_val, DenseMatrix< double > &eigen_vect) const
Determine eigenvalues and eigenvectors, using Jacobi rotations. Only for symmetric matrices....
Definition matrices.cc:224
Dense LU decomposition-based solve of full assembled linear system. VERY inefficient but useful to il...
Class for dense matrices, storing all the values of the matrix as a pointer to a pointer with assorte...
Definition matrices.h:386
unsigned long N
Number of rows.
Definition matrices.h:392
double * Matrixdata
Internal representation of matrix as a pointer to data.
Definition matrices.h:389
unsigned long M
Number of columns.
Definition matrices.h:395
void clear_distribution()
clear the distribution of this distributable linear algebra object
bool distributed() const
distribution is serial or distributed
unsigned nrow() const
access function to the number of global rows.
bool distribution_built() const
if the communicator_pt is null then the distribution is not setup then false is returned,...
unsigned nrow_local() const
access function for the num of local rows on this processor.
unsigned first_row() const
access function for the first row on this processor
LinearAlgebraDistribution * distribution_pt() const
access to the LinearAlgebraDistribution
void build_distribution(const LinearAlgebraDistribution *const dist_pt)
setup the distribution of this distributable linear algebra object
void solve(DoubleVector &rhs)
Complete LU solve (replaces matrix by its LU decomposition and overwrites RHS with solution)....
Definition matrices.cc:50
LinearSolver * Default_linear_solver_pt
Definition matrices.h:267
LinearSolver * Linear_solver_pt
Definition matrices.h:264
A vector in the mathematical sense, initially developed for linear algebra type applications....
void initialise(const double &v)
initialise the whole vector with value v
double * values_pt()
access function to the underlying values
double size() const
Calculate the size of the element (length, area, volume,...) in Eulerian computational coordinates....
Definition elements.cc:4320
Describes the distribution of a distributable linear algebra type object. Typically this is a contain...
bool distributed() const
access function to the distributed - indicates whether the distribution is serial or distributed
OomphCommunicator * communicator_pt() const
const access to the communicator pointer
unsigned nrow() const
access function to the number of global rows.
virtual void solve(Problem *const &problem_pt, DoubleVector &result)=0
Solver: Takes pointer to problem and returns the results vector which contains the solution of the li...
virtual void clean_up_memory()
Empty virtual function that can be overloaded in specific linear solvers to clean up any memory that ...
An oomph-lib wrapper to the MPI_Comm communicator object. Just contains an MPI_Comm object (which is ...
An OomphLibError object which should be thrown when an run-time error is encountered....
An OomphLibWarning object which should be created as a temporary object to issue a warning....
unsigned long Nnz
Number of non-zero values (i.e. size of Value array)
Definition matrices.h:574
T * Value
Internal representation of the matrix values, a pointer.
Definition matrices.h:565
T * value()
Access to C-style value array.
Definition matrices.h:616
unsigned long N
Number of rows.
Definition matrices.h:568
unsigned long M
Number of columns.
Definition matrices.h:571
SuperLU Project Solver class. This is a combined wrapper for both SuperLU and SuperLU Dist....
TAdvectionDiffusionReactionElement<NREAGENT,DIM,NNODE_1D> elements are isoparametric triangular DIM-d...
double gershgorin_eigenvalue_estimate(const DenseMatrix< CRDoubleMatrix * > &matrix_pt)
Calculates the largest Gershgorin disc whilst preserving the sign. Let A be an n by n matrix,...
Definition matrices.cc:4003
void concatenate_without_communication(const Vector< LinearAlgebraDistribution * > &row_distribution_pt, const Vector< LinearAlgebraDistribution * > &col_distribution_pt, const DenseMatrix< CRDoubleMatrix * > &matrix_pt, CRDoubleMatrix &result_matrix)
Concatenate CRDoubleMatrix matrices.
Definition matrices.cc:5223
double inf_norm(const DenseMatrix< CRDoubleMatrix * > &matrix_pt)
Compute infinity (maximum) norm of sub blocks as if it was one matrix.
Definition matrices.cc:3731
void concatenate(const DenseMatrix< CRDoubleMatrix * > &matrix_pt, CRDoubleMatrix &result_matrix)
Concatenate CRDoubleMatrix matrices. The in matrices are concatenated such that the block structure o...
Definition matrices.cc:4349
void create_uniformly_distributed_matrix(const unsigned &nrow, const unsigned &ncol, const OomphCommunicator *const comm_pt, const Vector< double > &values, const Vector< int > &column_indices, const Vector< int > &row_start, CRDoubleMatrix &matrix_out)
Builds a uniformly distributed matrix. A locally replicated matrix is constructed then redistributed ...
Definition matrices.cc:3676
void concatenate(const Vector< LinearAlgebraDistribution * > &in_distribution_pt, LinearAlgebraDistribution &out_distribution)
Takes a vector of LinearAlgebraDistribution objects and concatenates them such that the nrow_local of...
double timer()
returns the time in seconds after some point in past
void multiply(const CRDoubleMatrix *matrix, const DoubleVector &x, DoubleVector &soln)
Function to perform a matrix-vector multiplication on a oomph-lib matrix and vector using Trilinos fu...
DRAIG: Change all instances of (SPATIAL_DIM) to (DIM-1).
OomphInfo oomph_info
Single (global) instantiation of the OomphInfo object – this is used throughout the library as a "rep...