displacement_based_foeppl_von_karman_elements.cc
Go to the documentation of this file.
1// LIC// ====================================================================
2// LIC// This file forms part of oomph-lib, the object-oriented,
3// LIC// multi-physics finite-element library, available
4// LIC// at http://www.oomph-lib.org.
5// LIC//
6// LIC// Copyright (C) 2006-2025 Matthias Heil and Andrew Hazel
7// LIC//
8// LIC// This library is free software; you can redistribute it and/or
9// LIC// modify it under the terms of the GNU Lesser General Public
10// LIC// License as published by the Free Software Foundation; either
11// LIC// version 2.1 of the License, or (at your option) any later version.
12// LIC//
13// LIC// This library is distributed in the hope that it will be useful,
14// LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16// LIC// Lesser General Public License for more details.
17// LIC//
18// LIC// You should have received a copy of the GNU Lesser General Public
19// LIC// License along with this library; if not, write to the Free Software
20// LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21// LIC// 02110-1301 USA.
22// LIC//
23// LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24// LIC//
25// LIC//====================================================================
26// Non-inline functions for FoepplvonKarman displacement elements
27
29
30#include <iostream>
31
32namespace oomph
33{
34 // Foeppl von Karman displacement equations static data
35
36 /// Default value for Poisson's ratio
38
39 /// Default value physical constants
40 double
42 0.0;
43
44
45 //======================================================================
46 /// Self-test: Return 0 for OK
47 //======================================================================
49 {
50 bool passed = true;
51
52 // Check lower-level stuff
53 if (FiniteElement::self_test() != 0)
54 {
55 passed = false;
56 }
57
58 // Return verdict
59 if (passed)
60 {
61 return 0;
62 }
63 else
64 {
65 return 1;
66 }
67 }
68
69 //======================================================================
70 /// Output function:
71 ///
72 /// x,y,w
73 ///
74 /// nplot points in each coordinate direction
75 //======================================================================
77 const unsigned& nplot)
78 {
79 // Vector of local coordinates
81 // Vector of Eulerian coordinates
82 Vector<double> x(2);
83
84 // Sigma_{\alpha \beta}
85 DenseMatrix<double> sigma(2, 2);
86
87 // E_{\alpha \beta}
89
90 // Tecplot header info
92
93 // Loop over plot points
95 for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
96 {
97 // Get local coordinates of plot point
99
100 // Get the Eulerian coordinates
101 for (unsigned i = 0; i < 2; i++)
102 {
103 x[i] = interpolated_x(s, i);
104 outfile << x[i] << " ";
105 }
106
107 outfile << interpolated_w_fvk(s, 0) << " "; // w
108 outfile << interpolated_w_fvk(s, 1) << " "; // Laplacian W
109 outfile << interpolated_w_fvk(s, 2) << " "; // Ux
110 outfile << interpolated_w_fvk(s, 3) << " "; // Uy
111 // outfile << std::endl; // New line
112
113 // Get the stresses at local coordinate s
115
116 // Output stress
117 outfile << sigma(0, 0) << " "; // sigma_xx
118 outfile << sigma(0, 1) << " "; // sigma_xy
119 outfile << sigma(1, 1) << " "; // sigma_yy
120
121 // Output strain
122 outfile << strain(0, 0) << " "; // E_xx
123 outfile << strain(0, 1) << " "; // E_xy
124 outfile << strain(1, 1) << " "; // E_yy
125 outfile << std::endl;
126 }
127
128 // Write tecplot footer (e.g. FE connectivity lists)
130 }
131
132
133 //======================================================================
134 /// C-style output function:
135 ///
136 /// x,y,w
137 ///
138 /// nplot points in each coordinate direction
139 //======================================================================
141 const unsigned& nplot)
142 {
143 // Vector of local coordinates
144 Vector<double> s(2);
145
146 // Tecplot header info
148
149 // Loop over plot points
151 for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
152 {
153 // Get local coordinates of plot point
155
156 for (unsigned i = 0; i < 2; i++)
157 {
158 fprintf(file_pt, "%g ", interpolated_x(s, i));
159 }
161 }
162
163 // Write tecplot footer (e.g. FE connectivity lists)
165 }
166
167
168 //======================================================================
169 /// Output exact solution
170 ///
171 /// Solution is provided via function pointer.
172 /// Plot at a given number of plot points.
173 ///
174 /// x,y,w_exact
175 //======================================================================
177 std::ostream& outfile,
178 const unsigned& nplot,
180 {
181 // Vector of local coordinates
182 Vector<double> s(2);
183
184 // Vector for coordintes
185 Vector<double> x(2);
186
187 // Tecplot header info
189
190 // Exact solution Vector (here a scalar)
191 // Vector<double> exact_soln(1);
193
194 // Loop over plot points
196 for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
197 {
198 // Get local coordinates of plot point
200
201 // Get x position as Vector
202 interpolated_x(s, x);
203
204 // Get exact solution at this point
205 (*exact_soln_pt)(x, exact_soln);
206
207 // Output x,y,w_exact
208 for (unsigned i = 0; i < 2; i++)
209 {
210 outfile << x[i] << " ";
211 }
212 outfile << exact_soln[0] << " ";
213 outfile << exact_soln[1] << " ";
214 outfile << exact_soln[2] << std::endl;
215 }
216
217 // Write tecplot footer (e.g. FE connectivity lists)
219 }
220
221
222 //======================================================================
223 /// Validate against exact solution
224 ///
225 /// Solution is provided via function pointer.
226 /// Plot error at a given number of plot points.
227 ///
228 //======================================================================
230 std::ostream& outfile,
232 double& error,
233 double& norm)
234 {
235 // Initialise
236 error = 0.0;
237 norm = 0.0;
238
239 // Vector of local coordinates
240 Vector<double> s(2);
241
242 // Vector for coordintes
243 Vector<double> x(2);
244
245 // Find out how many nodes there are in the element
246 unsigned n_node = nnode();
247
249
250 // Set the value of n_intpt
251 unsigned n_intpt = integral_pt()->nweight();
252
253 // Tecplot
254 outfile << "ZONE" << std::endl;
255
256 // Exact solution vector
258
259 // Loop over the integration points
260 for (unsigned ipt = 0; ipt < n_intpt; ipt++)
261 {
262 // Assign values of s
263 for (unsigned i = 0; i < 2; i++)
264 {
265 s[i] = integral_pt()->knot(ipt, i);
266 }
267
268 // Get the integral weight
269 double w = integral_pt()->weight(ipt);
270
271 // Get jacobian of mapping
272 double J = J_eulerian(s);
273
274 // Premultiply the weights and the Jacobian
275 double W = w * J;
276
277 // Get x position as Vector
278 interpolated_x(s, x);
279
280 // Get FE function value
281 double w_fe = interpolated_w_fvk(s);
282
283 // Get exact solution at this point
284 (*exact_soln_pt)(x, exact_soln);
285
286 // Output x,y,error
287 for (unsigned i = 0; i < 2; i++)
288 {
289 outfile << x[i] << " ";
290 }
291 outfile << exact_soln[0] << " " << exact_soln[0] - w_fe << std::endl;
292
293 // Add to error and norm
294 norm += exact_soln[0] * exact_soln[0] * W;
295 error += (exact_soln[0] - w_fe) * (exact_soln[0] - w_fe) * W;
296 }
297 }
298
299} // namespace oomph
static char t char * s
Definition cfortran.h:568
cstr elem_len * i
Definition cfortran.h:603
void compute_error(std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, double &error, double &norm)
Get error against and norm of exact solution.
void output_fct(std::ostream &outfile, const unsigned &n_plot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Output exact soln: x,y,w_exact at n_plot^DIM plot points.
void get_stress_and_strain_for_output(const Vector< double > &s, DenseMatrix< double > &sigma, DenseMatrix< double > &strain)
void output(std::ostream &outfile)
Output with default number of plot points.
double interpolated_w_fvk(const Vector< double > &s, unsigned index=0) const
Return FE representation of function value w_fvk(s) at local coordinate s (by default - if index > 0,...
static double Default_Physical_Constant_Value
Default value for physical constants.
virtual double J_eulerian(const Vector< double > &s) const
Return the Jacobian of mapping from local to global coordinates at local position s.
Definition elements.cc:4133
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition elements.h:1967
virtual std::string tecplot_zone_string(const unsigned &nplot) const
Return string for tecplot zone header (when plotting nplot points in each "coordinate direction")
Definition elements.h:3165
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition elements.cc:3992
unsigned nnode() const
Return the number of nodes.
Definition elements.h:2214
void(* SteadyExactSolutionFctPt)(const Vector< double > &, Vector< double > &)
Function pointer for function that computes vector-valued steady "exact solution" as .
Definition elements.h:1763
virtual void get_s_plot(const unsigned &i, const unsigned &nplot, Vector< double > &s, const bool &shifted_to_interior=false) const
Get cector of local coordinates of plot point i (when plotting nplot points in each "coordinate direc...
Definition elements.h:3152
virtual unsigned nplot_points(const unsigned &nplot) const
Return total number of plot points (when plotting nplot points in each "coordinate direction")
Definition elements.h:3190
virtual void write_tecplot_zone_footer(std::ostream &outfile, const unsigned &nplot) const
Add tecplot zone "footer" to output stream (when plotting nplot points in each "coordinate direction"...
Definition elements.h:3178
virtual unsigned self_test()
Self-test: Check inversion of element & do self-test for GeneralisedElement. Return 0 if OK.
Definition elements.cc:4470
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition shape.h:76
TAdvectionDiffusionReactionElement<NREAGENT,DIM,NNODE_1D> elements are isoparametric triangular DIM-d...
DRAIG: Change all instances of (SPATIAL_DIM) to (DIM-1).