Tfoeppl_von_karman_elements.h
Go to the documentation of this file.
1// LIC// ====================================================================
2// LIC// This file forms part of oomph-lib, the object-oriented,
3// LIC// multi-physics finite-element library, available
4// LIC// at http://www.oomph-lib.org.
5// LIC//
6// LIC// Copyright (C) 2006-2025 Matthias Heil and Andrew Hazel
7// LIC//
8// LIC// This library is free software; you can redistribute it and/or
9// LIC// modify it under the terms of the GNU Lesser General Public
10// LIC// License as published by the Free Software Foundation; either
11// LIC// version 2.1 of the License, or (at your option) any later version.
12// LIC//
13// LIC// This library is distributed in the hope that it will be useful,
14// LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16// LIC// Lesser General Public License for more details.
17// LIC//
18// LIC// You should have received a copy of the GNU Lesser General Public
19// LIC// License along with this library; if not, write to the Free Software
20// LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21// LIC// 02110-1301 USA.
22// LIC//
23// LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24// LIC//
25// LIC//====================================================================
26// Header file for TFoepplvonKarman elements
27#ifndef OOMPH_TFOEPPLVONKARMAN_ELEMENTS_HEADER
28#define OOMPH_TFOEPPLVONKARMAN_ELEMENTS_HEADER
29
30
31// Config header
32#ifdef HAVE_CONFIG_H
33#include <oomph-lib-config.h>
34#endif
35
36
37// OOMPH-LIB headers
38#include "generic/nodes.h"
40#include "generic/Telements.h"
42
44
45namespace oomph
46{
47 /////////////////////////////////////////////////////////////////////////
48 /////////////////////////////////////////////////////////////////////////
49 // TFoepplvonKarmanElement
50 ////////////////////////////////////////////////////////////////////////
51 ////////////////////////////////////////////////////////////////////////
52
53
54 //======================================================================
55 /// TFoepplvonKarmanElement<NNODE_1D> elements are isoparametric
56 /// triangular 2-dimensional Foeppl von Karman elements with NNODE_1D
57 /// nodal points along each element edge. Inherits from TElement and
58 /// FoepplvonKarmanEquations
59 //======================================================================
60 template<unsigned NNODE_1D>
61 class TFoepplvonKarmanElement : public virtual TElement<2, NNODE_1D>,
62 public virtual FoepplvonKarmanEquations,
63 public virtual ElementWithZ2ErrorEstimator
64 {
65 public:
66 /// Constructor: Call constructors for TElement and
67 /// Foeppl von Karman equations
72
73
74 /// Broken copy constructor
76 delete;
77
78 /// Broken assignment operator
80
81 /// Access function for Nvalue: # of `values' (pinned or dofs)
82 /// at node n (always returns the same value at every node, 8)
83 inline unsigned required_nvalue(const unsigned& n) const
84 {
85 return Initial_Nvalue;
86 }
87
88 /// Output function:
89 /// x,y,w
90 void output(std::ostream& outfile)
91 {
93 }
94
95 /// Output function:
96 /// x,y,w at n_plot^2 plot points
97 void output(std::ostream& outfile, const unsigned& n_plot)
98 {
100 }
101
102
103 /// C-style output function:
104 /// x,y,w
109
110
111 /// C-style output function:
112 /// x,y,w at n_plot^2 plot points
113 void output(FILE* file_pt, const unsigned& n_plot)
114 {
116 }
117
118
119 /// Output function for an exact solution:
120 /// x,y,w_exact
127
128
129 /// Output function for a time-dependent exact solution.
130 /// x,y,w_exact (calls the steady version)
131 void output_fct(std::ostream& outfile,
132 const unsigned& n_plot,
133 const double& time,
135 {
138 }
139
140 protected:
141 /// Shape, test functions & derivs. w.r.t. to global coords. Return
142 /// Jacobian.
144 Shape& psi,
145 DShape& dpsidx,
146 Shape& test,
147 DShape& dtestdx) const;
148
149
150 /// Shape, test functions & derivs. w.r.t. to global coords. Return
151 /// Jacobian.
152 inline double dshape_and_dtest_eulerian_at_knot_fvk(const unsigned& ipt,
153 Shape& psi,
154 DShape& dpsidx,
155 Shape& test,
156 DShape& dtestdx) const;
157
158 /// Order of recovery shape functions for Z2 error estimation:
159 /// Same order as shape functions.
161 {
162 return (NNODE_1D - 1);
163 }
164
165 /// Number of 'flux' terms for Z2 error estimation
167 {
168 return 2;
169 }
170
171 /// Get 'flux' for Z2 error recovery: Standard flux.from FvK equations
173 {
174 this->get_gradient_of_deflection(s, flux);
175 }
176
177 /// Number of vertex nodes in the element
178 unsigned nvertex_node() const
179 {
181 }
182
183 /// Pointer to the j-th vertex node in the element
184 Node* vertex_node_pt(const unsigned& j) const
185 {
187 }
188
189 private:
190 /// Static unsigned that holds the (same) number of variables at every node
191 static const unsigned Initial_Nvalue;
192 };
193
194
195 // Inline functions:
196
197
198 //======================================================================
199 /// Define the shape functions and test functions and derivatives
200 /// w.r.t. global coordinates and return Jacobian of mapping.
201 ///
202 /// Galerkin: Test functions = shape functions
203 //======================================================================
204 template<unsigned NNODE_1D>
206 const Vector<double>& s,
207 Shape& psi,
208 DShape& dpsidx,
209 Shape& test,
210 DShape& dtestdx) const
211 {
212 unsigned n_node = this->nnode();
213
214 // Call the geometrical shape functions and derivatives
215 double J = this->dshape_eulerian(s, psi, dpsidx);
216
217 // Loop over the test functions and derivatives and set them equal to the
218 // shape functions
219 for (unsigned i = 0; i < n_node; i++)
220 {
221 test[i] = psi[i];
222 dtestdx(i, 0) = dpsidx(i, 0);
223 dtestdx(i, 1) = dpsidx(i, 1);
224 }
225
226 // Return the jacobian
227 return J;
228 }
229
230
231 //======================================================================
232 /// Define the shape functions and test functions and derivatives
233 /// w.r.t. global coordinates and return Jacobian of mapping.
234 ///
235 /// Galerkin: Test functions = shape functions
236 //======================================================================
237 template<unsigned NNODE_1D>
239 NNODE_1D>::dshape_and_dtest_eulerian_at_knot_fvk(const unsigned& ipt,
240 Shape& psi,
241 DShape& dpsidx,
242 Shape& test,
243 DShape& dtestdx) const
244 {
245 // Call the geometrical shape functions and derivatives
246 double J = this->dshape_eulerian_at_knot(ipt, psi, dpsidx);
247
248 // Set the pointers of the test functions
249 test = psi;
250 dtestdx = dpsidx;
251
252 // Return the jacobian
253 return J;
254 }
255
256
257 //=======================================================================
258 /// Face geometry for the TFoepplvonKarmanElement elements: The spatial
259 /// dimension of the face elements is one lower than that of the
260 /// bulk element but they have the same number of points
261 /// along their 1D edges.
262 //=======================================================================
263 template<unsigned NNODE_1D>
265 : public virtual TElement<1, NNODE_1D>
266 {
267 public:
268 /// Constructor: Call the constructor for the
269 /// appropriate lower-dimensional TElement
271 };
272
273} // namespace oomph
274
275#endif
static char t char * s
Definition cfortran.h:568
cstr elem_len * i
Definition cfortran.h:603
A Class for the derivatives of shape functions The class design is essentially the same as Shape,...
Definition shape.h:278
Base class for finite elements that can compute the quantities that are required for the Z2 error est...
FaceGeometry()
Constructor: Call the constructor for the appropriate lower-dimensional TElement.
FaceGeometry class definition: This policy class is used to allow construction of face elements that ...
Definition elements.h:5002
unsigned nnode() const
Return the number of nodes.
Definition elements.h:2214
void(* SteadyExactSolutionFctPt)(const Vector< double > &, Vector< double > &)
Function pointer for function that computes vector-valued steady "exact solution" as .
Definition elements.h:1763
double dshape_eulerian(const Vector< double > &s, Shape &psi, DShape &dpsidx) const
Compute the geometric shape functions and also first derivatives w.r.t. global coordinates at local c...
Definition elements.cc:3328
void(* UnsteadyExactSolutionFctPt)(const double &, const Vector< double > &, Vector< double > &)
Function pointer for function that computes Vector-valued time-dependent function as .
Definition elements.h:1769
A class for all isoparametric elements that solve the Foeppl von Karman equations.
void get_gradient_of_deflection(const Vector< double > &s, Vector< double > &gradient) const
Get gradient of deflection: gradient[i] = dw/dx_i.
void output_fct(std::ostream &outfile, const unsigned &n_plot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Output exact soln: x,y,w_exact at n_plot^DIM plot points.
void output(std::ostream &outfile)
Output with default number of plot points.
Nodes are derived from Data, but, in addition, have a definite (Eulerian) position in a space of a gi...
Definition nodes.h:906
A Class for shape functions. In simple cases, the shape functions have only one index that can be tho...
Definition shape.h:76
TAdvectionDiffusionReactionElement<NREAGENT,DIM,NNODE_1D> elements are isoparametric triangular DIM-d...
TAdvectionDiffusionReactionElement()
Constructor: Call constructors for TElement and AdvectionDiffusionReaction equations.
General TElement class.
Definition Telements.h:1208
TFoepplvonKarmanElement<NNODE_1D> elements are isoparametric triangular 2-dimensional Foeppl von Karm...
TFoepplvonKarmanElement()
Constructor: Call constructors for TElement and Foeppl von Karman equations.
unsigned required_nvalue(const unsigned &n) const
Access function for Nvalue: # of ‘values’ (pinned or dofs) at node n (always returns the same value a...
static const unsigned Initial_Nvalue
Static unsigned that holds the (same) number of variables at every node.
double dshape_and_dtest_eulerian_at_knot_fvk(const unsigned &ipt, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const
Shape, test functions & derivs. w.r.t. to global coords. Return Jacobian.
TFoepplvonKarmanElement(const TFoepplvonKarmanElement< NNODE_1D > &dummy)=delete
Broken copy constructor.
void output_fct(std::ostream &outfile, const unsigned &n_plot, const double &time, FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt)
Output function for a time-dependent exact solution. x,y,w_exact (calls the steady version)
unsigned nrecovery_order()
Order of recovery shape functions for Z2 error estimation: Same order as shape functions.
void operator=(const TFoepplvonKarmanElement< NNODE_1D > &)=delete
Broken assignment operator.
void output_fct(std::ostream &outfile, const unsigned &n_plot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Output function for an exact solution: x,y,w_exact.
unsigned num_Z2_flux_terms()
Number of 'flux' terms for Z2 error estimation.
Node * vertex_node_pt(const unsigned &j) const
Pointer to the j-th vertex node in the element.
void get_Z2_flux(const Vector< double > &s, Vector< double > &flux)
Get 'flux' for Z2 error recovery: Standard flux.from FvK equations.
void output(std::ostream &outfile)
Output function: x,y,w.
void output(std::ostream &outfile, const unsigned &n_plot)
Output function: x,y,w at n_plot^2 plot points.
void output(FILE *file_pt, const unsigned &n_plot)
C-style output function: x,y,w at n_plot^2 plot points.
void output(FILE *file_pt)
C-style output function: x,y,w.
double dshape_and_dtest_eulerian_fvk(const Vector< double > &s, Shape &psi, DShape &dpsidx, Shape &test, DShape &dtestdx) const
Shape, test functions & derivs. w.r.t. to global coords. Return Jacobian.
unsigned nvertex_node() const
Number of vertex nodes in the element.
DRAIG: Change all instances of (SPATIAL_DIM) to (DIM-1).