fish_poisson_node_update.cc
Go to the documentation of this file.
1//LIC// ====================================================================
2//LIC// This file forms part of oomph-lib, the object-oriented,
3//LIC// multi-physics finite-element library, available
4//LIC// at http://www.oomph-lib.org.
5//LIC//
6//LIC// Copyright (C) 2006-2025 Matthias Heil and Andrew Hazel
7//LIC//
8//LIC// This library is free software; you can redistribute it and/or
9//LIC// modify it under the terms of the GNU Lesser General Public
10//LIC// License as published by the Free Software Foundation; either
11//LIC// version 2.1 of the License, or (at your option) any later version.
12//LIC//
13//LIC// This library is distributed in the hope that it will be useful,
14//LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15//LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16//LIC// Lesser General Public License for more details.
17//LIC//
18//LIC// You should have received a copy of the GNU Lesser General Public
19//LIC// License along with this library; if not, write to the Free Software
20//LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21//LIC// 02110-1301 USA.
22//LIC//
23//LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24//LIC//
25//LIC//====================================================================
26// Driver for solution of 2D Poisson equation in fish-shaped domain with
27// adaptivity and mesh updates
28
29// Generic oomph-lib headers
30#include "generic.h"
31
32// The Poisson equations
33#include "poisson.h"
34
35// The fish mesh
36#include "meshes/fish_mesh.h"
37
38using namespace std;;
39
40using namespace oomph;
41
42//============ start_of_namespace=====================================
43/// Namespace for const source term in Poisson equation
44//====================================================================
46{
47
48 /// Strength of source function: default value -1.0
49 double Strength=-1.0;
50
51/// Const source function
52 void get_source(const Vector<double>& x, double& source)
53 {
54 source = Strength;
55 }
56
57} // end of namespace
58
59
60
61
62//======start_of_problem_class========================================
63/// Refineable Poisson problem in fish-shaped domain.
64/// Template parameter identifies the element type.
65//====================================================================
66template<class ELEMENT>
67class RefineableFishPoissonProblem : public Problem
68{
69
70public:
71
72 /// Constructor
74
75 /// Destructor: Empty
77
78 /// Update the problem specs after solve (empty)
80
81 /// Update the problem specs before solve (empty)
83
84 /// Overloaded version of the problem's access function to
85 /// the mesh. Recasts the pointer to the base Mesh object to
86 /// the actual mesh type.
87 RefineableFishMesh<ELEMENT>* mesh_pt()
88 {
89 return dynamic_cast<RefineableFishMesh<ELEMENT>*>(Problem::mesh_pt());
90 }
91
92 /// Doc the solution. Output directory and labels are specified
93 /// by DocInfo object
94 void doc_solution(DocInfo& doc_info);
95
96}; // end of problem class
97
98
99
100
101
102//===========start_of_constructor=========================================
103/// Constructor for adaptive Poisson problem in fish-shaped
104/// domain.
105//========================================================================
106template<class ELEMENT>
108{
109
110 // Build fish mesh -- this is a coarse base mesh consisting
111 // of four elements. We'll refine/adapt the mesh later.
112 Problem::mesh_pt()=new RefineableFishMesh<ELEMENT>;
113
114 // Create/set error estimator
115 mesh_pt()->spatial_error_estimator_pt()=new Z2ErrorEstimator;
116
117 // Set the boundary conditions for this problem: All nodes are
118 // free by default -- just pin the ones that have Dirichlet conditions
119 // here. Since the boundary values are never changed, we set
120 // them here rather than in actions_before_newton_solve().
121 unsigned num_bound = mesh_pt()->nboundary();
122 for(unsigned ibound=0;ibound<num_bound;ibound++)
123 {
124 unsigned num_nod= mesh_pt()->nboundary_node(ibound);
125 for (unsigned inod=0;inod<num_nod;inod++)
126 {
127 // Pin the single scalar value at this node
128 mesh_pt()->boundary_node_pt(ibound,inod)->pin(0);
129
130 // Assign the homogenous boundary condition to the one
131 // and only nodal value
132 mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
133 }
134 }
135
136 // Loop over elements and set pointers to source function
137 unsigned n_element = mesh_pt()->nelement();
138 for(unsigned i=0;i<n_element;i++)
139 {
140 // Upcast from FiniteElement to the present element
141 ELEMENT *el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
142
143 //Set the source function pointer
144 el_pt->source_fct_pt() = &ConstSourceForPoisson::get_source;
145 }
146
147 // Setup the equation numbering scheme
148 cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
149
150} // end of constructor
151
152
153
154
155//=======start_of_doc=====================================================
156/// Doc the solution in tecplot format.
157//========================================================================
158template<class ELEMENT>
160{
161
162 ofstream some_file;
163 char filename[100];
164
165 // Number of plot points in each coordinate direction.
166 unsigned npts;
167 npts=5;
168
169 // Output solution
170 snprintf(filename, sizeof(filename), "%s/soln%i.dat",doc_info.directory().c_str(),
171 doc_info.number());
172 some_file.open(filename);
173 mesh_pt()->output(some_file,npts);
174 some_file.close();
175
176 // Output boundaries
177 snprintf(filename, sizeof(filename), "%s/boundaries%i.dat",doc_info.directory().c_str(),
178 doc_info.number());
179 some_file.open(filename);
180 mesh_pt()->output_boundaries(some_file);
181 some_file.close();
182
183} // end of doc
184
185
186
187
188
189
190
191//=================start_of_main==========================================
192/// Demonstrate how to solve 2D Poisson problem in
193/// fish-shaped domain with black-box mesh adaptation
194/// and domain updates in response to changes in the domain
195/// shape.
196//========================================================================
197int main()
198{
199
200 //Set up the problem with 9 node refineable Poisson elements
202
203 // Setup labels for output
204 //------------------------
205 DocInfo doc_info;
206
207 // Set output directory
208 doc_info.set_directory("RESLT");
209
210 // Adjust the domain shape by changing the width of the fish
211 //----------------------------------------------------------
212 unsigned nstep=3;
213 for (unsigned i=0;i<nstep;i++)
214 {
215 // Get pointer to GeomObject that defines the position of the
216 // fish's back:
217 GeomObject* fish_back_pt=problem.mesh_pt()->fish_back_pt();
218
219 // Recast to pointer to Circle object to get access to the member function
220 // that sets the y-position of the Circle's centre and decrease its
221 // value, making the fish narrower
222 dynamic_cast<Circle*>(fish_back_pt)->y_c()-=0.1;
223
224 // Update the domain shape in response to the changes in its
225 // boundary
226 problem.mesh_pt()->node_update();
227
228 // Solve the problem, allowing for up to two levels of refinement
229 problem.newton_solve(2);
230
231 //Output solution
232 problem.doc_solution(doc_info);
233
234 //Increment counter for solutions
235 doc_info.number()++;
236 }
237
238} // end of main
239
Refineable Poisson problem in fish-shaped domain. Template parameter identifies the element type.
virtual ~RefineableFishPoissonProblem()
Destructor: Empty.
void actions_before_newton_solve()
Update the problem specs before solve (empty)
RefineableFishMesh< ELEMENT > * mesh_pt()
Overloaded version of the problem's access function to the mesh. Recasts the pointer to the base Mesh...
RefineableFishPoissonProblem()
Constructor.
void actions_after_newton_solve()
Update the problem specs after solve (empty)
void doc_solution(DocInfo &doc_info)
Doc the solution. Output directory and labels are specified by DocInfo object.
int main()
Demonstrate how to solve 2D Poisson problem in fish-shaped domain with black-box mesh adaptation and ...
Namespace for const source term in Poisson equation.
void get_source(const Vector< double > &x, double &source)
Const source function.
double Strength
Strength of source function: default value -1.0.