periodic_load.cc
Go to the documentation of this file.
1//LIC// ====================================================================
2//LIC// This file forms part of oomph-lib, the object-oriented,
3//LIC// multi-physics finite-element library, available
4//LIC// at http://www.oomph-lib.org.
5//LIC//
6//LIC// Copyright (C) 2006-2025 Matthias Heil and Andrew Hazel
7//LIC//
8//LIC// This library is free software; you can redistribute it and/or
9//LIC// modify it under the terms of the GNU Lesser General Public
10//LIC// License as published by the Free Software Foundation; either
11//LIC// version 2.1 of the License, or (at your option) any later version.
12//LIC//
13//LIC// This library is distributed in the hope that it will be useful,
14//LIC// but WITHOUT ANY WARRANTY; without even the implied warranty of
15//LIC// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16//LIC// Lesser General Public License for more details.
17//LIC//
18//LIC// You should have received a copy of the GNU Lesser General Public
19//LIC// License along with this library; if not, write to the Free Software
20//LIC// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21//LIC// 02110-1301 USA.
22//LIC//
23//LIC// The authors may be contacted at oomph-lib@maths.man.ac.uk.
24//LIC//
25//LIC//====================================================================
26// Driver for a periodically loaded elastic body
27
28// The oomphlib headers
29#include "generic.h"
30#include "linear_elasticity.h"
31
32// The mesh
33#include "meshes/rectangular_quadmesh.h"
34
35using namespace std;
36
37using namespace oomph;
38
39//===start_of_namespace=================================================
40/// Namespace for global parameters
41//======================================================================
43{
44 /// Amplitude of traction applied
45 double Amplitude = 1.0;
46
47 /// Specify problem to be solved (boundary conditons for finite or
48 /// infinite domain).
49 bool Finite=false;
50
51 /// Define Poisson coefficient Nu
52 double Nu = 0.3;
53
54 /// Length of domain in x direction
55 double Lx = 1.0;
56
57 /// Length of domain in y direction
58 double Ly = 2.0;
59
60 /// The elasticity tensor
61 IsotropicElasticityTensor E(Nu);
62
63 /// The exact solution for infinite depth case
64 void exact_solution(const Vector<double> &x,
65 Vector<double> &u)
66 {
67 u[0] = -Amplitude*cos(2.0*MathematicalConstants::Pi*x[0]/Lx)*
68 exp(2.0*MathematicalConstants::Pi*(x[1]-Ly))/
69 (2.0/(1.0+Nu)*MathematicalConstants::Pi);
70 u[1] = -Amplitude*sin(2.0*MathematicalConstants::Pi*x[0]/Lx)*
71 exp(2.0*MathematicalConstants::Pi*(x[1]-Ly))/
72 (2.0/(1.0+Nu)*MathematicalConstants::Pi);
73 }
74
75 /// The traction function
76void periodic_traction(const double &time,
77 const Vector<double> &x,
78 const Vector<double> &n,
79 Vector<double> &result)
80 {
81 result[0] = -Amplitude*cos(2.0*MathematicalConstants::Pi*x[0]/Lx);
82 result[1] = -Amplitude*sin(2.0*MathematicalConstants::Pi*x[0]/Lx);
83 }
84} // end_of_namespace
85
86
87//===start_of_problem_class=============================================
88/// Periodic loading problem
89//======================================================================
90template<class ELEMENT>
91class PeriodicLoadProblem : public Problem
92{
93public:
94
95 /// Constructor: Pass number of elements in x and y directions
96 /// and lengths
97 PeriodicLoadProblem(const unsigned &nx, const unsigned &ny,
98 const double &lx, const double &ly);
99
100 /// Update before solve is empty
102
103 /// Update after solve is empty
105
106 /// Doc the solution
107 void doc_solution(DocInfo& doc_info);
108
109private:
110
111 /// Allocate traction elements on the top surface
113
114 /// Pointer to the bulk mesh
116
117 /// Pointer to the mesh of traction elements
119
120}; // end_of_problem_class
121
122
123//===start_of_constructor=============================================
124/// Problem constructor: Pass number of elements in coordinate
125/// directions and size of domain.
126//====================================================================
127template<class ELEMENT>
129(const unsigned &nx, const unsigned &ny,
130 const double &lx, const double& ly)
131{
132 //Now create the mesh with periodic boundary conditions in x direction
133 bool periodic_in_x=true;
134 Bulk_mesh_pt =
135 new RectangularQuadMesh<ELEMENT>(nx,ny,lx,ly,periodic_in_x);
136
137 //Create the surface mesh of traction elements
138 Surface_mesh_pt=new Mesh;
139 assign_traction_elements();
140
141 // Set the boundary conditions for this problem: All nodes are
142 // free by default -- just pin & set the ones that have Dirichlet
143 // conditions here
144 unsigned ibound=0;
145 unsigned num_nod=Bulk_mesh_pt->nboundary_node(ibound);
146 for (unsigned inod=0;inod<num_nod;inod++)
147 {
148 // Get pointer to node
149 Node* nod_pt=Bulk_mesh_pt->boundary_node_pt(ibound,inod);
150
151 // Pinned in x & y at the bottom and set value
152 nod_pt->pin(0);
153 nod_pt->pin(1);
154
155 // Check which boundary conditions to set and set them
157 {
158 // Set the displacements to zero
159 nod_pt->set_value(0,0);
160 nod_pt->set_value(1,0);
161 }
162 else
163 {
164 // Extract nodal coordinates from node:
165 Vector<double> x(2);
166 x[0]=nod_pt->x(0);
167 x[1]=nod_pt->x(1);
168
169 // Compute the value of the exact solution at the nodal point
170 Vector<double> u(2);
172
173 // Assign these values to the nodal values at this node
174 nod_pt->set_value(0,u[0]);
175 nod_pt->set_value(1,u[1]);
176 };
177 } // end_loop_over_boundary_nodes
178
179 // Complete the problem setup to make the elements fully functional
180
181 // Loop over the elements
182 unsigned n_el = Bulk_mesh_pt->nelement();
183 for(unsigned e=0;e<n_el;e++)
184 {
185 // Cast to a bulk element
186 ELEMENT *el_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(e));
187
188 // Set the elasticity tensor
189 el_pt->elasticity_tensor_pt() = &Global_Parameters::E;
190 }// end loop over elements
191
192 // Loop over the traction elements
193 unsigned n_traction = Surface_mesh_pt->nelement();
194 for(unsigned e=0;e<n_traction;e++)
195 {
196 // Cast to a surface element
197 LinearElasticityTractionElement<ELEMENT> *el_pt =
198 dynamic_cast<LinearElasticityTractionElement<ELEMENT>* >
199 (Surface_mesh_pt->element_pt(e));
200
201 // Set the applied traction
202 el_pt->traction_fct_pt() = &Global_Parameters::periodic_traction;
203 }// end loop over traction elements
204
205 // Add the submeshes to the problem
206 add_sub_mesh(Bulk_mesh_pt);
207 add_sub_mesh(Surface_mesh_pt);
208
209 // Now build the global mesh
210 build_global_mesh();
211
212 // Assign equation numbers
213 cout << assign_eqn_numbers() << " equations assigned" << std::endl;
214} // end of constructor
215
216
217//===start_of_traction===============================================
218/// Make traction elements along the top boundary of the bulk mesh
219//===================================================================
220template<class ELEMENT>
222{
223
224 // How many bulk elements are next to boundary 2 (the top boundary)?
225 unsigned bound=2;
226 unsigned n_neigh = Bulk_mesh_pt->nboundary_element(bound);
227
228 // Now loop over bulk elements and create the face elements
229 for(unsigned n=0;n<n_neigh;n++)
230 {
231 // Create the face element
232 FiniteElement *traction_element_pt
233 = new LinearElasticityTractionElement<ELEMENT>
234 (Bulk_mesh_pt->boundary_element_pt(bound,n),
235 Bulk_mesh_pt->face_index_at_boundary(bound,n));
236
237 // Add to mesh
238 Surface_mesh_pt->add_element_pt(traction_element_pt);
239 }
240
241} // end of assign_traction_elements
242
243//==start_of_doc_solution=================================================
244/// Doc the solution
245//========================================================================
246template<class ELEMENT>
248{
249 ofstream some_file;
250 char filename[100];
251
252 // Number of plot points
253 unsigned npts=5;
254
255 // Output solution
256 snprintf(filename, sizeof(filename), "%s/soln.dat",doc_info.directory().c_str());
257 some_file.open(filename);
258 Bulk_mesh_pt->output(some_file,npts);
259 some_file.close();
260
261 // Output exact solution
262 snprintf(filename, sizeof(filename), "%s/exact_soln.dat",doc_info.directory().c_str());
263 some_file.open(filename);
264 Bulk_mesh_pt->output_fct(some_file,npts,
266 some_file.close();
267
268 // Doc error
269 double error=0.0;
270 double norm=0.0;
271 snprintf(filename, sizeof(filename), "%s/error.dat",doc_info.directory().c_str());
272 some_file.open(filename);
273 Bulk_mesh_pt->compute_error(some_file,
275 error,norm);
276 some_file.close();
277
278// Doc error norm:
279 cout << "\nNorm of error " << sqrt(error) << std::endl;
280 cout << "Norm of solution : " << sqrt(norm) << std::endl << std::endl;
281 cout << std::endl;
282
283
284} // end_of_doc_solution
285
286
287//===start_of_main======================================================
288/// Driver code for PeriodicLoad linearly elastic problem
289//======================================================================
290int main(int argc, char* argv[])
291{
292 // Number of elements in x-direction
293 unsigned nx=5;
294
295 // Number of elements in y-direction (for (approximately) square elements)
296 unsigned ny=unsigned(double(nx)*Global_Parameters::Ly/Global_Parameters::Lx);
297
298 // Set up doc info
299 DocInfo doc_info;
300
301 // Set output directory
302 doc_info.set_directory("RESLT");
303
304 // Set up problem
307
308 // Solve
309 problem.newton_solve();
310
311 // Output the solution
312 problem.doc_solution(doc_info);
313
314} // end_of_main
Periodic loading problem.
Mesh * Bulk_mesh_pt
Pointer to the bulk mesh.
Mesh * Surface_mesh_pt
Pointer to the mesh of traction elements.
PeriodicLoadProblem(const unsigned &nx, const unsigned &ny, const double &lx, const double &ly)
Constructor: Pass number of elements in x and y directions and lengths.
void actions_before_newton_solve()
Update before solve is empty.
void actions_after_newton_solve()
Update after solve is empty.
void doc_solution(DocInfo &doc_info)
Doc the solution.
void assign_traction_elements()
Allocate traction elements on the top surface.
Namespace for global parameters.
void periodic_traction(const double &time, const Vector< double > &x, const Vector< double > &n, Vector< double > &result)
The traction function.
double Amplitude
Amplitude of traction applied.
double Nu
Define Poisson coefficient Nu.
double Ly
Length of domain in y direction.
IsotropicElasticityTensor E(Nu)
The elasticity tensor.
bool Finite
Specify problem to be solved (boundary conditons for finite or infinite domain).
void exact_solution(const Vector< double > &x, Vector< double > &u)
The exact solution for infinite depth case.
double Lx
Length of domain in x direction.
int main(int argc, char *argv[])
Driver code for PeriodicLoad linearly elastic problem.