Go to the source code of this file.
Classes | |
class | AnnularQuadMesh< ELEMENT > |
class | FourierDecomposedHelmholtzProblem< ELEMENT > |
Problem class. More... | |
Namespaces | |
namespace | PlanarWave |
Namespace to test representation of planar wave in spherical polars. | |
namespace | ProblemParameters |
Namespace for the Fourier decomposed Helmholtz problem parameters. | |
Functions | |
std::complex< double > | PlanarWave::I (0.0, 1.0) |
Imaginary unit. | |
void | PlanarWave::get_exact_u (const Vector< double > &x, Vector< double > &u) |
Exact solution as a Vector of size 2, containing real and imag parts. | |
void | PlanarWave::plot () |
Plot. | |
Vector< double > | ProblemParameters::Coeff (N_terms, 1.0) |
Coefficients in the exact solution. | |
std::complex< double > | ProblemParameters::I (0.0, 1.0) |
Imaginary unit. | |
void | ProblemParameters::get_exact_u (const Vector< double > &x, Vector< double > &u) |
Exact solution as a Vector of size 2, containing real and imag parts. | |
void | ProblemParameters::exact_minus_dudr (const Vector< double > &x, std::complex< double > &flux) |
Get -du/dr (spherical r) for exact solution. Equal to prescribed flux on inner boundary. | |
int | main (int argc, char **argv) |
Driver code for Fourier decomposed Helmholtz problem. | |
Variables | |
unsigned | PlanarWave::N_terms =100 |
Number of terms in series. | |
double | PlanarWave::K =3.0*MathematicalConstants::Pi |
Wave number. | |
double | ProblemParameters::K_squared =10.0 |
Square of the wavenumber. | |
int | ProblemParameters::N_fourier =3 |
Fourier wave number. | |
unsigned | ProblemParameters::Nterms_for_DtN =6 |
Number of terms in computation of DtN boundary condition. | |
unsigned | ProblemParameters::N_terms =6 |
Number of terms in the exact solution. | |
unsigned | ProblemParameters::El_multiplier =1 |
Multiplier for number of elements. | |
Driver code for Fourier decomposed Helmholtz problem.
Definition at line 732 of file sphere_scattering.cc.
References AnnularQuadMesh< ELEMENT >::AnnularQuadMesh(), ProblemParameters::El_multiplier, and ProblemParameters::N_fourier.