
Chapter 1

Demo problem: Bending of a cantilever beam

In this example we solve a classical solid mechanics problem, the bending of a cantilever beam, subject to a
pressure loading on its upper face and/or gravity. We assume that the material behaves like a generalised Hookean
solid with elastic modulus E∗ and Poisson's ratio ν Here is a sketch:

Figure 1.1 Sketch of the problem.

This problem is interesting because it has an (approximate) St. Venant solution for the stress field which may be
constructed in terms of an Airy stress function (see, e.g. H. Eschenauer & W. Schnell "Elastizitaetstheorie I", BI
Wissenschaftsverlag, 2nd edition, 1986).

1.1 Results

The following figure shows an animation of beam's deformation in response to an increase in the uniform pressure,
P , at zero gravity, g = 0. The colour contours represent the magnitude of the "horizontal" component of the
2nd Piola-Kirchhoff stress tensor, σ11 . Its approximately linear variation across the beam's thickness indicates a
bending-type stress distribution with the stress being positive (tensile) at the top and negative (compressive) at the
bottom.
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2 Demo problem: Bending of a cantilever beam

Figure 1.2 Animation of the beam's deformation with contours of its `horizontal' stress component.

The next figure shows a comparison of the computational predictions for σ11 (in green), and the approximate
analytical solution (in red).

Figure 1.3 Comparison of the computed distribution of the `horizontal' stress (in green) against the
approximate analytical solution (in red).

The agreement between the two solutions is excellent over most of the domain, apart from two small regions near
the left end of the beam where stress singularities develop at the vertices of the domain. The singularities arise
because the zero-tangential stress boundary condition on the top and bottom faces is inconsistent with the zero-
displacement boundary condition on the left face. The singularities are not captured by the approximate analytical
solution. oomph-lib's automatic mesh adaptation refines the mesh in an attempt to capture the rapid variations
of the stresses in these regions.
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1.2 Global parameters and functions 3

1.2 Global parameters and functions

As usual, we define a namespace, Global_Physical_Variables, to define the problem parameters: the
dimensions of the cantilever beam, (a pointer to) a constitutive equation, and its parameters E and ν.
//=======start_namespace==========================================
/// Global variables
//================================================================
namespace Global_Physical_Variables
{

/// Half height of beam
double H=0.5;

/// Length of beam
double L=10.0;

/// Pointer to constitutive law
ConstitutiveLaw* Constitutive_law_pt;

/// Elastic modulus
double E=1.0;

/// Poisson’s ratio
double Nu=0.3;

We refer to the document "Solid mechanics: Theory and implementation" for a detailed dis-
cussion of the non-dimensionalisation and merely recall that by setting E = 1, we imply that all stresses are
non-dimensionalised with the structure's dimensional Young's modulus E∗. Similarly, by setting the half-thickness
of the beam to 0.5, we imply that the beam's dimensional thickness, 2H∗ is used to non-dimensionalise all lengths.
Next, we define a function that defines the constant pressure load on the upper face of the cantilever,
/// Uniform pressure
double P = 0.0;

/// Constant pressure load. The arguments to this function are imposed
/// on us by the SolidTractionElements which allow the traction to
/// depend on the Lagrangian and Eulerian coordinates x and xi, and on the
/// outer unit normal to the surface. Here we only need the outer unit
/// normal.
void constant_pressure(const Vector<double> &xi, const Vector<double> &x,

const Vector<double> &n, Vector<double> &traction)
{
unsigned dim = traction.size();
for(unsigned i=0;i<dim;i++)
{
traction[i] = -P*n[i];
}

} // end traction

and a gravitational body force, acting in the negative x2 -direction,
/// Non-dim gravity
double Gravity=0.0;

/// Non-dimensional gravity as body force
void gravity(const double& time,

const Vector<double> &xi,
Vector<double> &b)

{
b[0]=0.0;
b[1]=-Gravity;

}

} //end namespace

1.3 The driver code

The driver code is very short. We start by building a GeneralisedHookean constitutive equation object and
store a pointer to it in the namespace Global_Physical_Variables. Next we construct the problem object,
using (a wrapped version of) oomph-lib's RefineableQPVDElement<2,3> – a nine-node quadrilateral
displacement-based solid mechanics element. (The wrapper is used to change the element's output function; see
Comment: Customising an element's output function for details).
//=======start_of_main==================================================
/// Driver for cantilever beam loaded by surface traction and/or
/// gravity
//======================================================================
int main()
{
// Create generalised Hookean constitutive equations
Global_Physical_Variables::Constitutive_law_pt =
new GeneralisedHookean(&Global_Physical_Variables::Nu,

&Global_Physical_Variables::E);
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4 Demo problem: Bending of a cantilever beam

//Set up the problem
CantileverProblem<MySolidElement<RefineableQPVDElement<2,3> > > problem;

The subsequent lines may be uncommented to experiment with different element types as suggested in the
Exercises.
// Uncomment these as an exercise
// CantileverProblem<MySolidElement<
// RefineableQPVDElementWithContinuousPressure<2> > > problem;
// CantileverProblem<MySolidElement<
// RefineableQPVDElementWithPressure<2> > > problem;

We initialise the load parameters and perform a parameter study in which we increment the pressure load in small
steps. The gravitational body force remains switched off to allow the comparison with the analytical solution which
only applies to the case with zero body force.
// Initial values for parameter values
Global_Physical_Variables::P=0.0;
Global_Physical_Variables::Gravity=0.0;
// Max. number of adaptations per solve
unsigned max_adapt=3;

//Parameter incrementation
unsigned nstep=5;
double p_increment=1.0e-5;
for(unsigned i=0;i<nstep;i++)
{
// Increment pressure load
Global_Physical_Variables::P+=p_increment;
// Solve the problem with Newton’s method, allowing
// up to max_adapt mesh adaptations after every solve.
problem.newton_solve(max_adapt);
// Doc solution
problem.doc_solution();
}

} //end of main

1.4 The problem class

The problem class contains the usual member functions, including separate access functions to the two sub-
meshes: The "bulk" mesh that contains the 2D solid elements, and a separate mesh in which we store the 1D
SolidTractionElements that apply the traction boundary condition on the beam's upper face. As usual,
we remove these elements before adapting the bulk mesh and re-attach them afterwards, using the functions
Problem::actions_before_adapt() and Problem::actions_after_adapt().
//=============begin_problem============================================
/// Problem class for the cantilever "beam" structure.
//======================================================================
template<class ELEMENT>
class CantileverProblem : public Problem
{
public:

/// Constructor:
CantileverProblem();

/// Update function (empty)
void actions_after_newton_solve() {}

/// Update function (empty)
void actions_before_newton_solve() {}

/// Access function for the solid mesh
ElasticRefineableRectangularQuadMesh<ELEMENT>*& solid_mesh_pt()
{return Solid_mesh_pt;}

/// Access function to the mesh of surface traction elements
SolidMesh*& traction_mesh_pt(){return Traction_mesh_pt;}

/// Actions before adapt: Wipe the mesh of traction elements
void actions_before_adapt();

/// Actions after adapt: Rebuild the mesh of traction elements
void actions_after_adapt();

/// Doc the solution
void doc_solution();

The creation/deletion of the SolidTractionElements is performed by private helper functions. We also store
a pointer to a node on the tip of the beam and will record its displacement as a function of the applied load in a trace
file.
private:

/// Pass pointer to traction function to the
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1.5 The problem constructor 5

/// elements in the traction mesh
void set_traction_pt();

/// Create traction elements
void create_traction_elements();

/// Delete traction elements
void delete_traction_elements();

/// Trace file
ofstream Trace_file;

/// Pointers to node whose position we’re tracing
Node* Trace_node_pt;

/// Pointer to solid mesh
ElasticRefineableRectangularQuadMesh<ELEMENT>* Solid_mesh_pt;

/// Pointer to mesh of traction elements
SolidMesh* Traction_mesh_pt;

/// DocInfo object for output
DocInfo Doc_info;

};

1.5 The problem constructor

The constructor builds the bulk mesh (the standard RefineableRectangularQuadMesh that we already
used in many previous examples, upgraded to a SolidMesh, via the procedure discussed in the document
Solid mechanics: Theory and implementation), using the element type specified by the template
parameter and the dimensions specified in the namespace Global_Physical_Variables.
//===========start_of_constructor=======================================
/// Constructor:
//======================================================================
template<class ELEMENT>
CantileverProblem<ELEMENT>::CantileverProblem()
{
// Create the mesh
// # of elements in x-direction
unsigned n_x=20;
// # of elements in y-direction
unsigned n_y=2;
// Domain length in x-direction
double l_x= Global_Physical_Variables::L;
// Domain length in y-direction
double l_y=2.0*Global_Physical_Variables::H;
// Shift mesh downwards so that centreline is at y=0:
Vector<double> origin(2);
origin[0]=0.0;
origin[1]=-0.5*l_y;
//Now create the mesh
solid_mesh_pt() = new ElasticRefineableRectangularQuadMesh<ELEMENT>(
n_x,n_y,l_x,l_y,origin);

We employ the Z2ErrorEstimator to assess the accuracy of the computed solution and to control the adaptive
mesh refinement. When used with the RefineableQPVDElements, the Z2ErrorEstimator uses the
components of Green's strain tensor as "fluxes" in its "flux recovery procedure".
// Set error estimator
solid_mesh_pt()->spatial_error_estimator_pt()=new Z2ErrorEstimator;

Next, we pass the constitutive equations and the gravitational body force to the elements, select a control node, and
perform one uniform mesh refinement.
//Assign the physical properties to the elements before any refinement
//Loop over the elements in the main mesh
unsigned n_element =solid_mesh_pt()->nelement();
for(unsigned i=0;i<n_element;i++)
{
//Cast to a solid element
ELEMENT *el_pt = dynamic_cast<ELEMENT*>(solid_mesh_pt()->element_pt(i));

// Set the constitutive law
el_pt->constitutive_law_pt() =
Global_Physical_Variables::Constitutive_law_pt;
//Set the body force
el_pt->body_force_fct_pt() = Global_Physical_Variables::gravity;
}

// Choose a control node: The last node in the solid mesh
unsigned nnod=solid_mesh_pt()->nnode();
Trace_node_pt=solid_mesh_pt()->node_pt(nnod-1);
// Refine the mesh uniformly
solid_mesh_pt()->refine_uniformly();
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6 Demo problem: Bending of a cantilever beam

We create a new mesh for the SolidTractionElements and build the elements using the helper function
create_traction_elements() before adding both submeshes to the problem and combining them into a
global mesh.
// Construct the traction element mesh
Traction_mesh_pt=new SolidMesh;
create_traction_elements();

// Pass pointer to traction function to the elements
// in the traction mesh
set_traction_pt();

// Solid mesh is first sub-mesh
add_sub_mesh(solid_mesh_pt());
// Add traction sub-mesh
add_sub_mesh(traction_mesh_pt());
// Build combined "global" mesh
build_global_mesh();

We pin the position of all nodes on the left boundary (boundary 3) of the bulk mesh. The subsequent
call to PVDEquationsBase<2>::pin_redundant_nodal_solid_pressures() is unnecessary (but
harmless) for the solid elements used in this driver code since RefineableQPVDElements do not contain
pressure degrees of freedom. It is a good idea to include this call anyway since our problem class is templated
by the element type and may therefore also be used with other elements (see Exercises ; we refer to another
tutorial for a detailed discussion of the need to pin "redundant" pressure degrees of freedom in computations
with spatial adaptivity.)

// Pin the left boundary (boundary 3) in both directions
unsigned n_side = mesh_pt()->nboundary_node(3);

// Loop over the nodes
for(unsigned i=0;i<n_side;i++)
{
solid_mesh_pt()->boundary_node_pt(3,i)->pin_position(0);
solid_mesh_pt()->boundary_node_pt(3,i)->pin_position(1);
}

// Pin the redundant solid pressures (if any)
PVDEquationsBase<2>::pin_redundant_nodal_solid_pressures(
solid_mesh_pt()->element_pt());

Finally, we assign the equation numbers, create a DocInfo object and open a trace file in which we shall record
the beam's load/displacement characteristics.
//Attach the boundary conditions to the mesh
cout « assign_eqn_numbers() « std::endl;
// Set output directory
Doc_info.set_directory("RESLT");
// Open trace file
char filename[100];
sprintf(filename,"%s/trace.dat",Doc_info.directory().c_str());
Trace_file.open(filename);

} //end of constructor

1.6 Actions before adaptation

Following our usual procedure, we delete the SolidTractionElements before adapting the bulk mesh:
//=====================start_of_actions_before_adapt======================
/// Actions before adapt: Wipe the mesh of traction elements
//========================================================================
template<class ELEMENT>
void CantileverProblem<ELEMENT>::actions_before_adapt()
{
// Kill the traction elements and wipe surface mesh
delete_traction_elements();

// Rebuild the Problem’s global mesh from its various sub-meshes
rebuild_global_mesh();
}// end of actions_before_adapt

1.7 Actions after adaptation

The SolidTractionElements are re-attached after the mesh adaptation. Again, the call to PVDEquations←↩

Base<2>::pin_redundant_nodal_solid_pressures() is not strictly necessary for the elements
used in the present driver code but is included "for safety".
//=====================start_of_actions_after_adapt=======================
/// Actions after adapt: Rebuild the mesh of traction elements
//========================================================================
template<class ELEMENT>
void CantileverProblem<ELEMENT>::actions_after_adapt()
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1.8 Setting the pointer to the traction function 7

{
// Create traction elements from all elements that are
// adjacent to boundary 2 and add them to surface meshes
create_traction_elements();

// Rebuild the Problem’s global mesh from its various sub-meshes
rebuild_global_mesh();

// Pin the redundant solid pressures (if any)
PVDEquationsBase<2>::pin_redundant_nodal_solid_pressures(
solid_mesh_pt()->element_pt());

// Set pointer to prescribed traction function for traction elements
set_traction_pt();

}// end of actions_after_adapt

1.8 Setting the pointer to the traction function

The helper function set_traction_pt() is used to pass the pointer to the traction function to the Solid←↩

TractionElements.
//==================start_of_set_traction_pt==============================
/// Set pointer to traction function for the relevant
/// elements in the traction mesh
//========================================================================
template<class ELEMENT>
void CantileverProblem<ELEMENT>::set_traction_pt()
{
// Loop over the elements in the traction element mesh
// for elements on the top boundary (boundary 2)
unsigned n_element=traction_mesh_pt()->nelement();
for(unsigned i=0;i<n_element;i++)
{
//Cast to a solid traction element
SolidTractionElement<ELEMENT> *el_pt =
dynamic_cast<SolidTractionElement<ELEMENT>*>
(traction_mesh_pt()->element_pt(i));
//Set the traction function
el_pt->traction_fct_pt() = Global_Physical_Variables::constant_pressure;
}

}// end of set traction pt

1.9 Creating the traction elements

The helper function create_traction_elements() is used to create the SolidTractionElements
and to store them in the appropriate sub-mesh.
//============start_of_create_traction_elements==============================
/// Create traction elements
//=======================================================================
template<class ELEMENT>
void CantileverProblem<ELEMENT>::create_traction_elements()
{
// Traction elements are located on boundary 2:
unsigned b=2;
// How many bulk elements are adjacent to boundary b?
unsigned n_element = solid_mesh_pt()->nboundary_element(b);

// Loop over the bulk elements adjacent to boundary b
for(unsigned e=0;e<n_element;e++)
{
// Get pointer to the bulk element that is adjacent to boundary b
ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
solid_mesh_pt()->boundary_element_pt(b,e));

//Find the index of the face of element e along boundary b
int face_index = solid_mesh_pt()->face_index_at_boundary(b,e);

// Create new element and add to mesh
Traction_mesh_pt->add_element_pt(new SolidTractionElement<ELEMENT>

(bulk_elem_pt,face_index));
}

// Pass the pointer to the traction function to the traction elements
set_traction_pt();

} // end of create_traction_elements

1.10 Deleting the traction elements

The helper function delete_traction_elements() is used to delete the SolidTractionElements.
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8 Demo problem: Bending of a cantilever beam

//============start_of_delete_traction_elements==============================
/// Delete traction elements and wipe the traction meshes
//=======================================================================
template<class ELEMENT>
void CantileverProblem<ELEMENT>::delete_traction_elements()
{
// How many surface elements are in the surface mesh
unsigned n_element = Traction_mesh_pt->nelement();

// Loop over the surface elements
for(unsigned e=0;e<n_element;e++)
{
// Kill surface element
delete Traction_mesh_pt->element_pt(e);
}

// Wipe the mesh
Traction_mesh_pt->flush_element_and_node_storage();
} // end of delete_traction_elements

1.11 Post-processing

The post-processing function doc_solution() outputs the finite-element solution, using the modified output
function defined in the wrapper class MySolidElement, discussed below.
//==============start_doc===========================================
/// Doc the solution
//==================================================================
template<class ELEMENT>
void CantileverProblem<ELEMENT>::doc_solution()
{
ofstream some_file;
char filename[100];
// Number of plot points
unsigned n_plot = 5;
// Output shape of and stress in deformed body
//--------------------------------------------
sprintf(filename,"%s/soln%i.dat",Doc_info.directory().c_str(),

Doc_info.number());
some_file.open(filename);
solid_mesh_pt()->output(some_file,n_plot);
some_file.close();

Next we output the approximate St. Venant solution at the same plot points and write the load/displacement char-
acteristics to the trace file.
// Output St. Venant solution
//---------------------------
sprintf(filename,"%s/exact_soln%i.dat",Doc_info.directory().c_str(),

Doc_info.number());
some_file.open(filename);
// Element dimension
unsigned el_dim=2;

Vector<double> s(el_dim);
Vector<double> x(el_dim);
Vector<double> xi(el_dim);
DenseMatrix<double> sigma(el_dim,el_dim);

// Constants for exact (St. Venant) solution
double a=-1.0/4.0*Global_Physical_Variables::P;
double b=-3.0/8.0*Global_Physical_Variables::P/Global_Physical_Variables::H;
double c=1.0/8.0*Global_Physical_Variables::P/
pow(Global_Physical_Variables::H,3);

double d=1.0/20.0*Global_Physical_Variables::P/Global_Physical_Variables::H;
// Loop over all elements to plot exact solution for stresses
unsigned nel=solid_mesh_pt()->nelement();
for (unsigned e=0;e<nel;e++)
{
// Get pointer to element
SolidFiniteElement* el_pt=dynamic_cast<SolidFiniteElement*>(
solid_mesh_pt()->element_pt(e));

//Tecplot header info
some_file « "ZONE I=" « n_plot « ", J=" « n_plot « std::endl;

//Loop over plot points
for(unsigned l2=0;l2<n_plot;l2++)
{
s[1] = -1.0 + l2*2.0/(n_plot-1);
for(unsigned l1=0;l1<n_plot;l1++)
{
s[0] = -1.0 + l1*2.0/(n_plot-1);

// Get Eulerian and Lagrangian coordinates
el_pt->interpolated_x(s,x);
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el_pt->interpolated_xi(s,xi);

//Output the x,y,..
for(unsigned i=0;i<el_dim;i++)
{some_file « x[i] « " ";}

// Change orientation of coordinate system relative
// to solution in lecture notes
double xx=Global_Physical_Variables::L-xi[0];
double yy=xi[1];

// Approximate analytical (St. Venant) solution
sigma(0,0)=c*(6.0*xx*xx*yy-4.0*yy*yy*yy)+
6.0*d*yy;
sigma(1,1)=2.0*(a+b*yy+c*yy*yy*yy);
sigma(1,0)=2.0*(b*xx+3.0*c*xx*yy*yy);
sigma(0,1)=sigma(1,0);
// Output stress
some_file « sigma(0,0) « " "

« sigma(1,0) « " "
« sigma(1,1) « " "
« std::endl;

}
}

}
some_file.close();
// Write trace file: Load/displacement characteristics
Trace_file « Global_Physical_Variables::P « " "

« Trace_node_pt->x(0) « " "
« Trace_node_pt->x(1) « " "
« std::endl;

// Increment label for output files
Doc_info.number()++;
} //end doc

1.12 Comments and exercises

1.12.1 Exercises

1. Modify the driver code so that the cantilever beam is loaded by gravity rather than a pressure load. Consult
the document "Solid mechanics: Theory and implementation" for details on the non-
dimensionalisation of the body force. Verify that for modest deflections and for sufficiently thin beams, the
macroscopic deformation due to a gravitational load is identical to that induced by an equivalent pressure
load, equivalent meaning that the total force on the beam is the same for both cases.

2. Change the element type to a RefineableQPVDElementWithPressure<2> and Refineable←↩

QPVDElementWithContinuousPressure<2> and compare the results. Both of these two elements
are based on a pressure-displacement formulation, the former employing a discontinuous pressure rep-
resentation (as in Crouzeix-Raviart Navier-Stokes elements), the latter employing a continuous pressure
representation (as in Taylor-Hood elements). Confirm that calls to PVDEquationsBase<2>::pin←↩

_redundant_nodal_solid_pressures() are essential if a continuous pressure representation is
used. Explain the code's behaviour when you comment out the calls to this function.

3. Repeat the computation without adaptivity, by using the non-refineable versions of the various solid mechanics
elements discussed above, namely the QPVDElement<2>, QPVDElementWithPressure<2> and
QPVDElementWithContinuousPressure<2>. This will require various changes to the code:

(a) You will have to create a solid mechanics version of the (non-refineable) RectangularQuadMesh.
This is necessary because non-refineable elements cannot be used with refineable meshes. Try it to
find out why! [Note: You could, of course, use the existing driver code with its refineable mesh and
the refineable elements and simply not use the adaptive capabilities by omitting the max_adapt ar-
gument when calling the Newton solver. However, the main point of this exercise is to force you to
understand how to upgrade an existing Mesh to a SolidMesh. It's easy: Simply follow the steps
used to create a refineable SolidMesh from the RefineableRectangularQuadMesh, in
src/meshes/rectangular_quadmesh.template.h. Instead of inheriting the mesh from
the RefineableRectangularQuadMesh and the SolidMesh classes, inherit from the non-
refineable RectangularQuadMesh and the SolidMesh.]
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10 Demo problem: Bending of a cantilever beam

(b) You must not pass the pointer to the error estimator to the non-refineable mesh – it has no use for it.

(c) You cannot call the adaptive Newton solver.

1.12.2 Comment: Customising an element's output function

In the driver code discussed above we used the "wrapper" class MySolidElement to customise the solid ele-
ments' output function so that each element outputs its shape and the three independent components of the second
Piola Kirchhoff stress, σ11, σ12 and σ22.
Here is the implementation: The "wrapping" element inherits from the element type specified by the template pa-
rameter and calls its constructor (recall that element constructors are always argument-free!).
//=================start_wrapper==================================
/// Wrapper class for solid elements to modify their output
/// functions.
//================================================================
template <class ELEMENT>
class MySolidElement : public virtual ELEMENT
{
public:

/// Constructor: Call constructor of underlying element
MySolidElement() : ELEMENT() {};

We then overload the (virtual) output function so that the element outputs its shape, i.e. the x and y coordinates of
its plot points, and the three independent components of the second Piola Kirchhoff stress at those points. Other
than that, the element behaves exactly as the underlying "wrapped" element.

/// Overload output function:
void output(std::ostream &outfile, const unsigned &n_plot)
{
// Element dimension
unsigned el_dim = this->dim();
Vector<double> s(el_dim);
Vector<double> x(el_dim);
DenseMatrix<double> sigma(el_dim,el_dim);

switch(el_dim)
{

case 2:
//Tecplot header info
outfile « "ZONE I=" « n_plot « ", J=" « n_plot « std::endl;

//Loop over element nodes
for(unsigned l2=0;l2<n_plot;l2++)
{
s[1] = -1.0 + l2*2.0/(n_plot-1);
for(unsigned l1=0;l1<n_plot;l1++)
{
s[0] = -1.0 + l1*2.0/(n_plot-1);

// Get Eulerian coordinates and stress
this->interpolated_x(s,x);
this->get_stress(s,sigma);
//Output the x,y,..
for(unsigned i=0;i<el_dim;i++)
{outfile « x[i] « " ";}
// Output stress
outfile « sigma(0,0) « " "

« sigma(1,0) « " "
« sigma(1,1) « " "
« std::endl;

}
}
break;

default:
std::ostringstream error_message;
error_message « "Output for dim !=2 not implemented" « std::endl;
throw OomphLibError(error_message.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}

}
};

[Note: Since this element is only defined and used in a 2D driver code, there is little point in implementing the output
for 1D or 3D elements. However, paranoid as we are, we check the dimension of the element and throw an error if
it is wrong.]
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Finally we declare that the FaceGeometry of the "wrapped" element is the same as that of the underlying ele-
ment. This step is required to allow the automatic construction of SolidTractionElements in create_←↩

traction_elements().
//===========start_face_geometry==============================================
/// FaceGeometry of wrapped element is the same as the underlying element
//============================================================================
template<class ELEMENT>
class FaceGeometry<MySolidElement<ELEMENT> > :
public virtual FaceGeometry<ELEMENT>
{
public:

/// Constructor [this was only required explicitly
/// from gcc 4.5.2 onwards...]
FaceGeometry() : FaceGeometry<ELEMENT>() {}
};

1.13 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/solid/airy_cantilever/

• The driver code is:

demo_drivers/solid/airy_cantilever/airy_cantilever.cc

1.14 PDF file

A pdf version of this document is available.
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