
Chapter 1

Demo problem: Fluid Mechanics on unstructured
meshes

This tutorial provides another quick demonstration of how to use unstructured meshes for the solution of fluid flow
problems. (The xfig / Triangle tutorial already contains 2D and 3D unstructured fluid examples.)

The specific problem considered here serves as a "warm-up problem" for the corresponding
fluid-structure interaction problem in which the part of the domain boundary is replaced by
an elastic object.

1.1 The problem

Here is a sketch of the problem: Flow is driven through a 2D channel that is partly obstructed by an odd-shaped
obstacle. The flow is driven by the imposed Poiseuille flow at the upstream end of the channel.

Figure 1.1 Sketch of the problem.

1.2 Mesh generation

We use the combination of xfig, oomph-lib's conversion code fig2poly , and the unstructured mesh
generator Triangle to generate the mesh, using the procedure discussed in another tutorial.
We start by drawing the outline of the fluid domain as a polyline in xfig:
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2 Demo problem: Fluid Mechanics on unstructured meshes

Figure 1.2 xfig drawing of the fluid body.

(Note that we draw the domain upside-down because of the way xfig orients its coordinate axes.)
We save the figure as a ∗.fig file and convert it to a ∗.poly file using oomph-lib's conversion code fig2poly
(a copy of which is located in oomph-lib's bin directory):
fig2poly fluid.fig

This creates a file called fluid.fig.poly that can be processed using Triangle. For instance, to create a
quality mesh with a maximum element size of 0.03 we use
triangle -q -a0.03 fluid.fig.poly

Here is a plot of the mesh, generated by showme distributed with Triangle :
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1.3 Results 3

Figure 1.3 Visualisation of the mesh with showme.

The ∗.poly, ∗.ele and ∗.node files generated by Triangle can now be used as input to
oomph-lib's TriangleMesh class.

1.3 Results

The animation shown below illustrates the flow field (streamlines and pressure contours) for Reynolds numbers of
Re = 0, 5, 10, ... An increase in Reynolds number increases the length of the recirculation region behind the obsta-
cle; furthermore, the sharp corner at the "leading edge" of the obstacle creates very low pressures just downstream
of the corner.
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4 Demo problem: Fluid Mechanics on unstructured meshes

Figure 1.4 Flowfield (streamlines and pressure contours) at various Reynolds numbers.

1.4 Creating the mesh

In anticipation of the mesh's use in a fluid-structure interaction problem, we create the mesh by multiple inheritance
from oomph-lib's TriangleMesh and the SolidMesh base class. This will allow us to use pseudo-solid
node-update techniques to update the position of the fluid nodes in response to changes in the domain boundary.
In the present problem, the "elasticity" of the fluid elements plays no useful role; see Comments and Exercises for
instructions on how to remove the pseudo-elasticity from the problem.
//===========start_mesh====================================================
/// Triangle-based mesh upgraded to become a (pseudo-) solid mesh
//=========================================================================
template<class ELEMENT>
class ElasticTriangleMesh : public virtual TriangleMesh<ELEMENT>,

public virtual SolidMesh
{

The constructor calls the constructor of the underlying TriangleMesh, and, as usual, sets the Lagrangian coor-
dinates to the current nodal positions, making the current configuration stress-free.

public:

/// Constructor:
ElasticTriangleMesh(const std::string& node_file_name,

const std::string& element_file_name,
const std::string& poly_file_name,
TimeStepper* time_stepper_pt=
&Mesh::Default_TimeStepper) :

TriangleMesh<ELEMENT>(node_file_name,element_file_name,
poly_file_name, time_stepper_pt)

{
//Assign the Lagrangian coordinates
set_lagrangian_nodal_coordinates();

//Identify the domain boundaries
this->identify_boundaries();
}

The TriangleMesh constructor associates each polyline in the xfig drawing with a distinct oomph-lib mesh
boundary. Hence the boundary nodes are initially located on the same, single boundary. The boundary conditions
can be more easily applied if the boundary is divided into three boundaries, which is the task of the function
TriangleMesh::identify_boundaries().
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1.5 Problem Parameters 5

We first allocate storage for three boundaries:

/// Function used to identify the domain boundaries
void identify_boundaries()
{
// We will have three boundaries
this->set_nboundary(3);

We loop over all nodes in the mesh and identify nodes on the left (inflow) boundary by their x-coordinate. We remove
the node from the boundary 0 and re-allocate it to the new boundary 1:

unsigned n_node=this->nnode();
for (unsigned j=0;j<n_node;j++)
{
Node* nod_pt=this->node_pt(j);
// Boundary 1 is left (inflow) boundary
if (nod_pt->x(0)<0.226)
{
// If it’s not on the upper or lower channel walls remove it
// from boundary 0
if ((nod_pt->x(1)<4.08)&&(nod_pt->x(1)>0.113))
{
this->remove_boundary_node(0,nod_pt);
}

Similarly, we identify all nodes on the right (outflow) boundary and re-assign them to boundary 2, before re-
generating the various boundary lookup schemes that identify which elements are located next to the various mesh
boundaries:

this->add_boundary_node(1,nod_pt);
}
// Boundary 2 is right (outflow) boundary
if (nod_pt->x(0)>8.28)
{
// If it’s not on the upper or lower channel walls remove it
// from boundary 0
if ((nod_pt->x(1)<4.08)&&(nod_pt->x(1)>0.113))
{
this->remove_boundary_node(0,nod_pt);
}

this->add_boundary_node(2,nod_pt);
}

}
this->setup_boundary_element_info();
}

/// Empty Destructor
virtual ~ElasticTriangleMesh() { }
};

1.5 Problem Parameters

As usual we define the various problem parameters in a global namespace. We define the Reynolds number and
prepare a pointer to a constitutive equation (for the pseudo-elastic elements).
//==start_namespace==============================
/// Namespace for physical parameters
//==================================================
namespace Global_Physical_Variables
{

/// Reynolds number
double Re=0.0;

/// Pseudo-solid Poisson ratio
double Nu=0.3;

/// Constitutive law used to determine the mesh deformation
ConstitutiveLaw *Constitutive_law_pt=0;
} // end_of_namespace

1.6 The driver code

We specify an output directory and instantiate a constitutive equation for the pseudo-elasticity, specifying the Pois-
son ratio.
//==start_of_main======================================================
/// Driver for unstructured fluid test problem
//=====================================================================
int main()
{
// Label for output
DocInfo doc_info;

//Set the constitutive law for the pseudo-elasticity
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6 Demo problem: Fluid Mechanics on unstructured meshes

Global_Physical_Variables::Constitutive_law_pt =
new GeneralisedHookean(&Global_Physical_Variables::Nu);

We create the Problem object and output the domain boundaries and the initial guess for the flow field.
// Build the problem with TTaylorHoodElements
UnstructuredFluidProblem<PseudoSolidNodeUpdateElement<
TTaylorHoodElement<2>,
TPVDElement<2,3> > > problem;

// Output boundaries
problem.fluid_mesh_pt()->output_boundaries("RESLT_TH/boundaries.dat");

// Output the initial guess for the solution
problem.doc_solution(doc_info);
doc_info.number()++;

Finally, we perform a straightforward parameter study by slowly increasing the Reynolds number of the flow from
zero.

// Parameter study
double re_increment=5.0;
unsigned nstep=2; // 10;
for (unsigned i=0;i<nstep;i++)
{
// Solve the problem
problem.newton_solve();

// Output the solution
problem.doc_solution(doc_info);
doc_info.number()++;

// Bump up Re
Global_Physical_Variables::Re+=re_increment;
} //end_of_parameter_study

1.7 The Problem class

The Problem class has the usual member functions and provides explicit storage for the fluid mesh. [This is again
slight overkill for the problem at hand, and is done mainly in anticipation of the "upgrade" of this driver code to
the FSI problem with its multiple meshes; in the present problem we could, of course, store the pointer to the
problem's one-and-only mesh directly in Problem::mesh_pt(). ]
//==start_of_problem_class============================================
/// Unstructured fluid problem
//====================================================================
template<class ELEMENT>
class UnstructuredFluidProblem : public Problem
{
public:

/// Constructor
UnstructuredFluidProblem();

/// Destructor (empty)
~UnstructuredFluidProblem(){}

/// Access function for the fluid mesh
ElasticTriangleMesh<ELEMENT>*& fluid_mesh_pt()
{
return Fluid_mesh_pt;
}

/// Set the boundary conditions
void set_boundary_conditions();

/// Doc the solution
void doc_solution(DocInfo& doc_info);
private:

/// Fluid mesh
ElasticTriangleMesh<ELEMENT>* Fluid_mesh_pt;
}; // end_of_problem_class

1.8 The Problem constructor

We start by building the fluid mesh, using the files created by Triangle .
//==start_constructor=====================================================
/// Constructor
//========================================================================
template<class ELEMENT>
UnstructuredFluidProblem<ELEMENT>::UnstructuredFluidProblem()
{
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1.9 Setting the boundary conditions 7

//Create fluid mesh
string fluid_node_file_name="fluid.fig.1.node";
string fluid_element_file_name="fluid.fig.1.ele";
string fluid_poly_file_name="fluid.fig.1.poly";
Fluid_mesh_pt = new ElasticTriangleMesh<ELEMENT>(fluid_node_file_name,

fluid_element_file_name,
fluid_poly_file_name);

Next, we apply the boundary conditions for the fluid and the pseudo-solid equations using the function set_←↩

boundary_conditions(), which also completes the build of the elements by setting the appropriate pointers
to the physical variables.
//Set the boundary conditions
this->set_boundary_conditions();

We add the fluid mesh as a single sub-mesh to the Problem and build the global mesh (see the comment in
The Problem class .)

// Add fluid mesh
add_sub_mesh(fluid_mesh_pt());

// Build global mesh
build_global_mesh();

Finally, we assign the equation numbers

// Setup equation numbering scheme
cout «"Number of equations: " « assign_eqn_numbers() « std::endl;
} // end_of_constructor

1.9 Setting the boundary conditions

We pin the pseudo-solid nodes along all domain boundaries, apply a no-slip condition for the fluid velocity along the
solid boundary (boundary 0), pin the velocity at the inflow (boundary 1, where we will impose a Poiseuille flow pro-
file), and impose parallel outflow at the downstream end (boundary 2). Given that the manual identification of mesh
boundaries in unstructured meshes that are generated by third-party mesh generators is a relatively error-prone
process, we document the boundary conditions in three separate files to allow an external sanity check; see the
comments in the corresponding solid mechanics tutorial. The Comments and Exercises
section of the present tutorial also has a sub-section that illustrates what can go wrong.

//============start_of_set_boundary_conditions=============================
/// Set the boundary conditions for the problem and document the boundary
/// nodes
//==========================================================================
template<class ELEMENT>
void UnstructuredFluidProblem<ELEMENT>::set_boundary_conditions()
{
// Doc pinned nodes
std::ofstream solid_bc_file("pinned_solid_nodes.dat");
std::ofstream u_bc_file("pinned_u_nodes.dat");
std::ofstream v_bc_file("pinned_v_nodes.dat");
// Set the boundary conditions for fluid problem: All nodes are
// free by default -- just pin the ones that have Dirichlet conditions
// here.
unsigned nbound=Fluid_mesh_pt->nboundary();
for(unsigned ibound=0;ibound<nbound;ibound++)
{
unsigned num_nod=Fluid_mesh_pt->nboundary_node(ibound);
for (unsigned inod=0;inod<num_nod;inod++)
{
// Get node
Node* nod_pt=Fluid_mesh_pt->boundary_node_pt(ibound,inod);
// Pin velocity everywhere apart from outlet where we
// have parallel outflow
if (ibound!=2)
{
// Pin it
nod_pt->pin(0);
// Doc it as pinned
u_bc_file « nod_pt->x(0) « " " « nod_pt->x(1) « std::endl;
}
// Pin it
nod_pt->pin(1);
// Doc it as pinned
v_bc_file « nod_pt->x(0) « " " « nod_pt->x(1) « std::endl;

// Pin pseudo-solid positions everywhere
for(unsigned i=0;i<2;i++)
{
// Pin the node
SolidNode* nod_pt=Fluid_mesh_pt->boundary_node_pt(ibound,inod);
nod_pt->pin_position(i);
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8 Demo problem: Fluid Mechanics on unstructured meshes

// Doc it as pinned
solid_bc_file « nod_pt->x(i) « " ";
}
solid_bc_file « std::endl;

}
} // end loop over boundaries

// Close
solid_bc_file.close();

We complete the build of the elements by specifying the Reynolds number and the constitutive equation for the
pseudo-solid equations.

// Complete the build of all elements so they are fully functional
unsigned n_element = fluid_mesh_pt()->nelement();
for(unsigned e=0;e<n_element;e++)
{
// Upcast from GeneralisedElement to the present element
ELEMENT* el_pt = dynamic_cast<ELEMENT*>(fluid_mesh_pt()->element_pt(e));
//Set the Reynolds number
el_pt->re_pt() = &Global_Physical_Variables::Re;
// Set the constitutive law
el_pt->constitutive_law_pt() =
Global_Physical_Variables::Constitutive_law_pt;

}

Finally, we impose a Poiseuille profile at the inflow boundary (boundary 1).
// Apply fluid boundary conditions: Poiseuille at inflow
//------------------------------------------------------
// Find max. and min y-coordinate at inflow
unsigned ibound=1;
//Initialise y_min and y_max to y-coordinate of first node on boundary
double y_min=fluid_mesh_pt()->boundary_node_pt(ibound,0)->x(1);
double y_max=y_min;
//Loop over the rest of the nodes
unsigned num_nod= fluid_mesh_pt()->nboundary_node(ibound);
for (unsigned inod=1;inod<num_nod;inod++)
{
double y=fluid_mesh_pt()->boundary_node_pt(ibound,inod)->x(1);
if (y>y_max)
{
y_max=y;

}
if (y<y_min)
{
y_min=y;

}
}

double y_mid=0.5*(y_min+y_max);

// Loop over all boundaries
for (unsigned ibound=0;ibound<fluid_mesh_pt()->nboundary();ibound++)
{
unsigned num_nod= fluid_mesh_pt()->nboundary_node(ibound);
for (unsigned inod=0;inod<num_nod;inod++)
{
// Parabolic inflow at the left boundary (boundary 1)
if (ibound==1)
{
double y=fluid_mesh_pt()->boundary_node_pt(ibound,inod)->x(1);
double veloc=1.5/(y_max-y_min)*
(y-y_min)*(y_max-y)/((y_mid-y_min)*(y_max-y_mid));

fluid_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,veloc);
fluid_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
}
// Zero flow elsewhere apart from x-velocity on outflow boundary
else
{
if(ibound!=2)
{
fluid_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
}

fluid_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
}

}
}

} // end_of_set_boundary_conditions

1.10 Post-processing

The post-processing routine outputs the flow field.
//==start_of_doc_solution=================================================
/// Doc the solution
//========================================================================
template<class ELEMENT>
void UnstructuredFluidProblem<ELEMENT>::doc_solution(DocInfo& doc_info)

Generated by Doxygen



1.11 Comments and Exercises 9

{
ofstream some_file;
char filename[100];
// Number of plot points
unsigned npts;
npts=5;
// Output solution
sprintf(filename,"%s/soln%i.dat",doc_info.directory().c_str(),

doc_info.number());
some_file.open(filename);
fluid_mesh_pt()->output(some_file,npts);
some_file.close();
} //end_of_doc_solution

1.11 Comments and Exercises
1.11.1 What is the Reynolds number?

The problem considered here is a "toy"-problem, devised to illustrate the use of unstructured meshes in fluids prob-
lems. The specific non-dimensionalisation and parameter values are therefore of secondary importance. However,
since oomph-lib's implementation of the Navier-Stokes equations is based on their non-dimensional form it is
important to clarify the meaning of the Reynolds number in the present problem.
Recall that the Reynolds number is defined as

Re =
ρUL
µ

where ρ and µ are the fluid density and viscosity, respectively. L is the reference length chosen for the
non-dimensionalisation of the coordinates. In the present problem, where the domain boundaries were simply
drawn in xfig , no specific reference length was identified, but inspection of the maximum and minimum y-
coordinates of the inflow boundary in the mesh plot shows that the inflow boundary has a (dimensional) length of
(4.0875 − 0.1125)L = 3.975L. In the non-dimensional version of the Navier-Stokes equations, all velocities are
non-dimensionalised with a reference velocity U . When we applied the inflow boundary conditions, we chose the
(dimensionless) inflow profile such that its integral over the inflow boundary yields a value of 1. The velocity scale
U may therefore be interpreted as a (dimensional) average inflow velocity through the channel, i.e. the volume flux
divided by the reference length scale.

1.11.2 Setting the boundary conditions

We wish to re-iterate the comments made in the corresponding solid mechanics tutorial that the
manual identification of nodes on domain boundaries is tedious and therefore error prone. It pays off to be as a
paranoid as possible, by always documenting the domain boundaries and the applied boundary conditions.
Here is the plot of boundary conditions applied in the present problem. Hollow blue markers indicate (pseudo-)solid
boundary conditions (both displacements are pinned); small red markers identify nodes where the vertical fluid
velocity is pinned; hollow green markers (filling the space between the blue and red lines markers) identify nodes at
which the horizontal fluid velocity is pinned.

Figure 1.5 Plot of the correct boundary conditions.
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10 Demo problem: Fluid Mechanics on unstructured meshes

Here is another plot, obtained with the initial version of our driver code – can you spot what's wrong and can you
identify the lines were added to the mesh constructor to fix the problem?

Figure 1.6 Plot of the wrong boundary conditions.

1.11.3 Pseudo-elasticity

As mentioned above, the elements' pseudo-elasticity plays no useful role in the present problem, as the domain
boundaries remain at fixed positions and no mesh movement is required.

• As an exercise, remove all functionality related to the pseudo-elasticity by changing the element type from
PseudoSolidNodeUpdateElement<TTaylorHoodElement<2>,TPVDElement<2,3> >

to
TTaylorHoodElement<2>

Adjust the code as required (e.g. remove mesh's inheritance from the SolidMesh base class; remove the
application of boundary conditions for the nodal positions; etc) and confirm that the results for the flow field
remain unchanged.

• Alternatively, the pseudo-elasticity can can be suppressed by pinning all nodal positions, drastically reducing
the number of degrees of freedom in the problem without the need to rewrite the rest of the code. (Note that
this is also a useful test for the development of FSI codes.)

• However, if the pseudo-elastic capabilities are retained the fluid mesh can indeed deform as an elas-
tic body; for example, by specifying a (solid mechanics) body force. Simply follow the steps used in
the corresponding solid mechanics problem. Define the body force in the namespace
Global_Physical_Variables and pass a (function-)pointer to it to the elements. N.B. The body force
for the (pseudo-)solid equations must be specified explicitly because the Navier-Stokes equations have their
own body force pointer! The compiler will complain about ambiguities in the following code:

[...]
//Set the body force
el_pt->body_force_fct_pt() = Global_Physical_Variables::gravity;
[...]

Instead, we must be more specific by writing

[...]
//Set the body force
el_pt->PVDEquationsBase<2>::body_force_fct_pt() =
Global_Physical_Variables::gravity;

[...]

indicating that it is the body force defined in the 2D solid mechanics equations that is being specified.
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1.12 Source files for this tutorial 11

1.12 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/navier_stokes/unstructured_fluid/

• The driver code is:

demo_drivers/navier_stokes/unstructured_fluid/unstructured_two_d_←↩

fluid.cc

1.13 PDF file

A pdf version of this document is available.
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