
Chapter 1

General-Purpose Block Preconditioners

In this document we will demonstrate how to use the general-purpose block preconditioners implemented in
oomph-lib. This tutorial follows from the Block Preconditioners tutorial, which provides an overview
of oomph-lib's generic block preconditioning framework.

We use the Problem described in the Bending of a Cantilever Beam tutorial to illustrate the key
concepts.

1.1 Introduction

In this section we define the four (distributed) general purpose block preconditioning methodologies. To recap, all
oomph-lib problems are solved in a Newton iteration which requires the repeated solution of linear systems of
the form

Jδx = −r

where J is the Jacobian matrix, r is the vector of residuals and δx is the Newton correction. We divide the DOFs in
the two-dimensional cantilever problem into two subsets corresponding to the x and y nodal positions.

[
Jxx Jxy
Jyx Jyy

]
.

[
δx
δy

]
= −

[
rx
ry

]

Utilising this partitioning we will describe four (distributed) general purpose block preconditioning methodologies.
(Left) preconditioning represents a transformation of the original linear system to

P−1J δx = −P−1r

with the aim of accelerating the convergence of Krylov subspace iterative methods such as GMRES or CG. The
application of the preconditioner requires the solution of

Pz = w

for z at each Krylov iteration.

Generated by Doxygen

../../../mpi/block_preconditioners/html/index.html
../../../solid/airy_cantilever/html/index.html

2 General-Purpose Block Preconditioners

1.1.1 Block Diagonal Preconditioning

We drop the off-diagonal blocks to form the block diagonal preconditioner

PBD =

[
Jxx

Jyy

]
.

the application of this preconditioner requires the solution of the subsidiary systems Jxx and Jyy.

1.1.2 Block Diagonal Preconditioning with Two-Level Parallelisation

The two-subsidiary systems in the block diagonal preconditioner (involving Jxx and Jyy) can be solved in any order.
In a parallel computation we can either solve the two systems one after the other using the full set of processes for
the solution of each linear system. An alternative is to solve all the subsidiary systems simultaneously, using only
a subset of processes for each system. We refer to this technique as two-level parallelisation and note that this
approach is particularly useful if the linear solvers do not have good parallel scaling properties.

1.1.3 Upper Block Triangular Preconditioning

An alternative to block diagonal preconditioning is block triangular preconditioning in which only off diagonal blocks
on one side of the diagonal are dropped. For example, in the block-upper triangular preconditioner

PBUT =

[
Jxx Jxy

Jyy

]

the block below the diagonal (Jyx) has been dropped. In addition to the two subsidiary solves for Jxx and Jyy this
preconditioner requires a matrix-vector product involving Jxy .

1.1.4 Lower Block Triangular Preconditioning

Similarly we can define a lower triangular block preconditioner

PBLT =

[
Jxx
Jyx Jyy

]
.

Generated by Doxygen

1.2 Application 3

1.2 Application

In this section we demonstrate the use of oomph-lib's general-purpose block preconditioners. All general-
purpose block preconditioners are derived from the base class GeneralPurposeBlockPreconditioner
(which is itself derived from the BlockPreconditioner class).

By default all general purpose block preconditioners use SuperLUPreconditioner as the preconditioner for
the subsidiary systems (Jxx and Jyy in the Introduction). SuperLUPreconditioner is a wrapper to both
the SuperLU direct solver and the SuperLU Dist distributed direct solver. Often we seek to replace this
direct solver preconditioning with an inexact solver to make the preconditioner more efficient. To use an alternative
subsidiary preconditioner we must define a function to return new instances of the chosen type of preconditioner
(inexact solver). For example
//=hypre_helper===
/// The function get_hypre_preconditioner() returns an instance of
/// HyprePreconditioner to be used as a subsidiary preconditioner in a
/// GeneralPurposeBlockPreconditioner
//==
namespace Hypre_Subsidiary_Preconditioner_Helper
{
Preconditioner* get_hypre_preconditioner()
{
return new HyprePreconditioner;

}
} // end_of_hypre_helper

would return instances of HyprePreconditioner, a wrapper to the distributed Hypre BoomerAMG imple-
mentation of classical AMG. Later we will pass a pointer to this function to the block preconditioner to enable the use
of HyprePreconditioner as a subsidiary preconditioner. Note that the function only creates the subsidiary
preconditioner – it will be deleted automatically by the master preconditioner when it is no longer required.

The rest of the section is concerned with the main function, and in particular setting up the preconditioner for use.
//=======start_of_main==
/// Driver for cantilever beam loaded by surface traction and/or
/// gravity
//==
int main(int argc, char* argv[])
{

Given an instance of the problem,
//Set up the problem
CantileverProblem<MySolidElement<RefineableQPVDElement<2,3> > > problem;

we specify GMRES as the linear solver. If available, we use the TrilinosAztecOOSolver wrapper to the
Trilinos AztecOO implementation of GMRES. (This is the only distributed implementation of GMRES in

oomph-lib.)
// use trilinos gmres if available
#ifdef OOMPH_HAS_TRILINOS
TrilinosAztecOOSolver* solver_pt = new TrilinosAztecOOSolver;
solver_pt->solver_type() = TrilinosAztecOOSolver::GMRES;
#else
GMRES<CRDoubleMatrix>* solver_pt = new GMRES<CRDoubleMatrix>;
#endif

GeneralPurposeBlockPreconditioner is the base class for all general purpose block preconditioners.
// Pointer to general purpose block preconditioner base class
GeneralPurposeBlockPreconditioner<CRDoubleMatrix>* prec_pt = 0;

We introduced four general purpose block preconditioning methodologies in the Introduction. The next step is to
construct one of these preconditioners.

• Block Diagonal Preconditioning. This is implemented in the class BlockDiagonalPreconditioner.
// Standard Block Diagonal
prec_pt = new BlockDiagonalPreconditioner<CRDoubleMatrix>;

• Enabling Two-Level Block Diagonal Preconditioning. By default two-level preconditioning is disabled and
hence enable_two_level_parallelisation() must have been called. Once this is done, each
subsidiary system will be solved on an (as near to) equal size subset of processes.

// Two Level Block Diagonal
prec_pt = new BlockDiagonalPreconditioner<CRDoubleMatrix>;
dynamic_cast<BlockDiagonalPreconditioner<CRDoubleMatrix>* >
(prec_pt)->enable_two_level_parallelisation();

Generated by Doxygen

http://crd.lbl.gov/~xiaoye/SuperLU/#superlu
http://crd.lbl.gov/~xiaoye/SuperLU/#superlu_dist
https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
http://trilinos.sandia.gov/packages/aztecoo/

4 General-Purpose Block Preconditioners

• Block Upper Triangular Preconditioning. Both block triangular preconditioners are implemented in the
class BlockTriangularPreconditioner. By default this employs the upper-triangular version of the
preconditioner.

// Block Upper Triangular
prec_pt = new BlockTriangularPreconditioner<CRDoubleMatrix>;

• Block Lower Triangular Preconditioning. The lower triangular version of the preconditioner can be selected
with a call to the method lower_triangular().

// Block Lower Triangular
prec_pt = new BlockTriangularPreconditioner<CRDoubleMatrix>;
dynamic_cast<BlockTriangularPreconditioner<CRDoubleMatrix>* >
(prec_pt)->lower_triangular();

Having chosen a preconditioner structure, the next stage is to choose the preconditioner for the subsidiary systems
(Jxx and Jyy in the Introduction). By default this is SuperLUPreconditioner, but we wish to use Hypre←↩

Preconditioner so we pass the previously specified function Hypre_Subsidiary_Preconditioner←↩

_Helper::get_hypre_preconditioner() to the preconditioner.
// Specify Hypre as the subsidiary block preconditioner
prec_pt->set_subsidiary_preconditioner_function

(Hypre_Subsidiary_Preconditioner_Helper::get_hypre_preconditioner);

The same subsidiary preconditioner is used for all subsidiary systems in a general purpose block preconditioner.

As discussed in the Block Preconditioners tutorial, the classification of the DOFs is implemented at an
elemental level so we pass a pointer to the mesh containing the elements to the preconditioner. (Note that this
problem contains two meshes, one containing the bulk elements and one containing the FaceElements that apply
the traction boundary condition. Since the latter do not introduce any new DOFs, all the DOFs are classified by the
bulk elements. Therefore, we do not need to pass the traction element mesh to the block preconditioner.)
// The preconditioner only requires the bulk mesh since its
// elements are capable of classifying all degrees of freedom

// prec_pt is a GeneralPurposeBlockPreconditioner, so we call the function
// add_mesh(...).
prec_pt->add_mesh(problem.solid_mesh_pt());

Finally, we pass the preconditioner to the solver
// pass the preconditioner to the solver
solver_pt->preconditioner_pt() = prec_pt;

and solve the problem:
// solve the problem
problem.newton_solve();

1.3 Parallelisation

Given that BlockPreconditioner, TrilinosAztecOOSolver, SuperLUPreconditioner,
HyprePreconditioner and MatrixVectorProduct are all automatically distributed, all that is required
for a distributed solution is to run the executable under MPI with multiple processes.

1.4 Source files for this tutorial

• The source files for the driver code are in

demo_drivers/mpi/solvers/

• The driver code is

demo_drivers/mpi/solvers/airy_cantilever.cc

1.5 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../mpi/block_preconditioners/html/index.html
../../../../demo_drivers/mpi/solvers/airy_cantilever.cc

	1 General-Purpose Block Preconditioners
	1.1 Introduction
	1.1.1 Block Diagonal Preconditioning
	1.1.2 Block Diagonal Preconditioning with Two-Level Parallelisation
	1.1.3 Upper Block Triangular Preconditioning
	1.1.4 Lower Block Triangular Preconditioning

	1.2 Application
	1.3 Parallelisation
	1.4 Source files for this tutorial
	1.5 PDF file

