
Chapter 1

Linear solvers

The purpose of this tutorial is to show how to specify different linear solvers for oomph-lib's Newton solver.

• Overview

• List of available linear solvers

• How to change the LinearSolver

– Direct solvers

– Iterative linear solvers and preconditioners

– Third-party iterative linear solvers and preconditioners

• Problem-specific preconditioners

1.1 Overview

As discussed in the bottom-up discussion of oomph-lib's data structure, by default
oomph-lib's Newton solver, Problem::newton_solve(...) solves the linear systems arising dur-
ing the Newton iteration with its default linear solver, SuperLUSolver, a wrapper to Demmel, Eistenstat,
Gilbert, Li & Liu's sparse direct solver SuperLU.
oomph-lib provides a large number of alternative linear solvers that may be used instead. All linear solvers within
the library are derived from the base class LinearSolver which contains a single pure virtual function

virtual void solve(Problem* const& problem_pt, DoubleVector& result) = 0;

whose task it is to compute the solution δx (returned in the vector result) of the linear system

J δx = −r

where r and J are the global Jacobian and the residual vector, computed by the Problem pointed to by
problem_pt. The LinearSolver class also defines linear-algebra-type interfaces that allow the solution
of linear systems with matrices other than the Problem's Jacobian matrix. However, these methods may not be
implemented for all linear solvers.

Generated by Doxygen

../../the_data_structure/html/index.html
../../the_data_structure/html/classoomph_1_1SuperLUSolver.html
http://crd.lbl.gov/~xiaoye/SuperLU
../../the_data_structure/html/classoomph_1_1LinearSolver.html
../../the_data_structure/html/classoomph_1_1LinearSolver.html


2 Linear solvers

1.2 List of available linear solvers

oomph-lib's linear solvers can be sub-divided into serial and parallel, and direct and iterative linear solvers.
Here is a quick overview of the available linear solvers. If you are viewing this document online, the links take you
directly to the solvers' class references which explain any solver-specific member functions.

• Serial solvers:

– Direct solvers:

* SuperLUSolver: oomph-lib's default linear solver, a wrapper to Demmel, Eistenstat,
Gilbert, Li & Liu's sparse direct solver SuperLU.

* HSL_MA42: A wrapper to the frontal solver MA42 from the HSL library. This solver is
available free-of-charge for UK academics. The source code can be dropped into the oomph-lib
distribution; see the instructions in the dummy code

external_src/oomph_hsl/dummy_frontal.f

* DenseLU: A direct solver, based on the LU decomposition of the Jacobian matrix which is stored
as a dense matrix. Given that the Jacobian matrices arising from most problems are sparse, this
is likely to be a very inefficient solver. It is mainly used by the derived (and even more inefficient!)
solver FD_LU.

* FD_LU: Almost certainly the world's most inefficient solver. It computes the Jacobian matrix by
finite differencing the global residual vector, without taking any sparsity into account. Mainly used
by developers as a last-resort sanity check.

– Iterative solvers:

* oomph-lib provides its own implementations of various standard iterative linear solvers. They
are derived from the base class IterativeLinearSolver and are typically templated by
the matrix type used store the Jacobian matrix. In most cases you will want to set the template
argument MATRIX to CRDoubleMatrix:

· GMRES: A Krylov subspace solver for symmetric and non-symmetric linear systems. The
memory usage increases with each iteration but the iteration can be restarted.

· BiCGStab: A Krylov subspace method for symmetric and non-symmetric linear systems.
The memory requirement remains constant throughout the iteration.

· CG: The classical conjugate gradient method for symmetric positive definite matrices. The
memory requirement remains constant throughout the iteration.

Generated by Doxygen

../../the_data_structure/html/classoomph_1_1SuperLUSolver.html
http://crd.lbl.gov/~xiaoye/SuperLU
../../the_data_structure/html/classoomph_1_1HSL__MA42.html
http://www.hsl.rl.ac.uk/
../../../external_src/oomph_hsl/dummy_frontal.f
../../the_data_structure/html/classoomph_1_1DenseLU.html
../../the_data_structure/html/classoomph_1_1FD__LU.html
../../the_data_structure/html/classoomph_1_1FD__LU.html
../../the_data_structure/html/classoomph_1_1IterativeLinearSolver.html
../../the_data_structure/html/classoomph_1_1GMRES.html
../../the_data_structure/html/classoomph_1_1BiCGStab.html
../../the_data_structure/html/classoomph_1_1CG.html


1.3 How to change the LinearSolver 3

· GS: Gauss-Seidel – a stationary iterative solver.

* oomph-lib also provides wrappers to third-party iterative linear solvers. These tend to provide
their own implementations of GMRES, BiCGStab, CG, etc. but are not necessarily derived from
oomph-lib's own IterativeLinearSolver base class.

· HypreSolver: A wrapper to the high-performance linear solvers/preconditioners from the
Scalable Linear Solvers Project.

· TrilinosAztecOOSolver: A wrapper to the linear solvers from the Trilinos
Project.

• Parallel solvers:

– Direct solvers:

* When oomph-lib is compiled with MPI support, its default linear solver SuperLUSolver be-
comes a wrapper to Demmel, Eistenstat, Gilbert, Li & Liu's parallel sparse direct solver Super←↩

LU_DIST. This behaviour can be over-ruled with the member function
SuperLUSolver::set_solver_type(...)

whose argument must specify one of the three options listed in the enumeration Super←↩

LUSolver::Type. This allows the serial solver SuperLU to be used even if oomph-lib is
compiled with MPI support.

* MumpsSolver : is a wrapper to the MUMPS multifrontal solver that is available when
oomph-lib is compiled with MPI support and support for MUMPS.

• Iterative solvers:

– HypreSolver: A wrapper to the high-performance linear solvers/preconditioners from the
Scalable Linear Solvers Project.

– TrilinosAztecOOSolver: A wrapper to the linear solvers from the Trilinos Project.

1.3 How to change the LinearSolver

1.3.1 Direct solvers

Changing oomph-lib's linear solver is straightforward. For instance, to change the linear solver to
oomph-lib's DenseLU solver, simply create an instance of this solver and pass a pointer to it to the Problem.
This most easily done in the Problem constructor:
// Change solver to DenseLU
linear_solver_pt()=new DenseLU;

In any subsequent calls to oomph-lib's Newton solver, DenseLU will now be used to solve the linear systems
arising during the Newton iteration.

Generated by Doxygen

../../the_data_structure/html/classoomph_1_1GS.html
../../the_data_structure/html/classoomph_1_1IterativeLinearSolver.html
../../the_data_structure/html/classoomph_1_1HypreSolver.html
https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
../../the_data_structure/html/classoomph_1_1TrilinosAztecOOSolver.html
http://trilinos.sandia.gov/
http://trilinos.sandia.gov/
../../the_data_structure/html/classoomph_1_1SuperLUSolver.html
http://crd.lbl.gov/~xiaoye/SuperLU#superlu_dist
http://crd.lbl.gov/~xiaoye/SuperLU#superlu_dist
http://crd.lbl.gov/~xiaoye/SuperLU
../../the_data_structure/html/classoomph_1_1MumpsSolver.html
http://graal.ens-lyon.fr/MUMPS/
../../the_data_structure/html/classoomph_1_1HypreSolver.html
https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
../../the_data_structure/html/classoomph_1_1TrilinosAztecOOSolver.html
http://trilinos.sandia.gov/


4 Linear solvers

1.3.2 Iterative linear solvers and preconditioners

The specification of an iterative linear solver is just as easy: For instance, to specify oomph-lib's conjugate
gradient solver CG (storing the Jacobian matrix in compressed row format) as the linear solver, add
// Change solver to CG
IterativeLinearSolver* solver_pt=new CG<CRDoubleMatrix>;
linear_solver_pt()=solver_pt;

to the problem constructor. We note that, by default, oomph-lib's IterativeLinearSolvers perform the
preconditioning using the trivial "identity preconditioner". Most Krylov subspace solvers perform very poorly without
some sort of preconditioning.
Specific preconditioners may be implemented by deriving from the Preconditioner base class, by implement-
ing its two pure virtual functions

/// Apply the preconditioner. Pure virtual generic interface
/// function. This method should apply the preconditioner operator to the
/// vector r and return the vector z.
virtual void preconditioner_solve(const DoubleVector& r,

DoubleVector& z) = 0;

and
/// Setup the preconditioner. Pure virtual generic interface
/// function.
virtual void setup() = 0;

Note that, by default, oomph-lib's IterativeLinearSolvers employ left preconditioning.
oomph-lib provides fully-functional implementations of several general-purpose preconditioners. For instance,
the zero-fill-in incomplete LU factorisation preconditioner ILU(0) may be employed by adding the lines
// Specify preconditioner
solver_pt->preconditioner_pt()=new ILUZeroPreconditioner<CRDoubleMatrix>;

to the Problem constructor.
Of particular interest is the availability of an "exact preconditioner"
SuperLUPreconditioner whose use guarantees the convergence of any iterative solver within a single

iteration – useful for code development.

1.3.3 Third-party iterative linear solvers and preconditioners

oomph-lib provides wrappers to various third-party iterative linear solvers and preconditioners. We stress that
these solvers are not necessarily implemented as oomph-lib IterativeLinearSolvers since their inter-
faces for the specification of preconditioners, etc may differ from those employed by oomph-lib. Furthermore,
unlike SuperLUSolver these solvers are not distributed as part of oomph-lib so you have to build/install
them separately before installing oomph-lib (oomph-lib's build machinery can do this for you if you wish;
see installation instructions for details). Once this is done, they may be used like any other linear
solver.

1.3.3.1 Trilinos

oomph-lib provides wrappers to the iterative linear solvers/preconditioners from the Trilinos
Project. The demo code TrilinosSolver_test.cc demonstrates how use various combinations
of solvers/preconditioners. Here is a brief overview:
Trilinos solvers
The wrappers to Trilinos' Krylov subspace solvers are implemented as oomph-lib IterativeLinear←↩

Solvers, allowing them to be used via the standard interfaces described above. For instance, to use
oomph-lib's wrapper to Trilinos' Aztec solver, using Trilinos' ML multilevel preconditioner, set the
solvers and preconditioners as usual:

// Create a Trilinos Solver
TrilinosAztecOOSolver* linear_solver_pt = new TrilinosAztecOOSolver;

// Create the Trilinos ML preconditioner
TrilinosMLPreconditioner* preconditioner_pt = new TrilinosMLPreconditioner;
// Set the preconditioner pointer
linear_solver_pt->preconditioner_pt() = preconditioner_pt;
// Set linear solver
problem.linear_solver_pt() = linear_solver_pt;

The actual Krylov subspace solver used by the Trilinos solver is specified by passing an enumerated flag (de-
fined as static member data in the TrilinosAztecOOSolver class) to the solver. For instance, Trilinos'
CG, GMRES and BiCGStab solvers are selected with

linear_solver_pt->solver_type() = TrilinosAztecOOSolver::CG;

or
linear_solver_pt->solver_type() = TrilinosAztecOOSolver::GMRES;

or
linear_solver_pt->solver_type() = TrilinosAztecOOSolver::BiCGStab;

Generated by Doxygen

../../the_data_structure/html/classoomph_1_1SuperLUPreconditioner.html
../../the_distribution/html/index.html#external_dist
http://trilinos.sandia.gov/
http://trilinos.sandia.gov/
../../../demo_drivers/linear_solvers/TrilinosSolver_test.cc


1.3 How to change the LinearSolver 5

respectively.
Trilinos preconditioners
oomph-lib provides wrappers to Trilinos' ML and IFPACK preconditioners that allows them to be used
as oomph-lib Preconditioners that may be used with oomph-lib's own IterativeLinear←↩

Solvers. Here is an example that shows how to build an instance of oomph-lib's GMRES, preconditioned
with its wrapper to Trilinos' IFPACK preconditioner:

// Create oomph-lib linear solver
IterativeLinearSolver* linear_solver_pt=new GMRES<CRDoubleMatrix>;
// Create Trilinos IFPACK preconditioner as oomph-lib Preconditioner
Preconditioner* preconditioner_pt=new TrilinosIFPACKPreconditioner;
// Pass pointer to preconditioner to oomph-lib IterativeLinearSolver
linear_solver_pt->preconditioner_pt()=preconditioner_pt;

1.3.3.2 Hypre

oomph-lib provides wrappers to the high-performance linear solvers/preconditioners from the Scalable
Linear Solvers Project. The demo code HypreSolver_test.cc demonstrates how use various
combinations of solvers/preconditioners. Here is a brief overview:
Hypre solvers
The wrappers to Hypre's Krylov subspace and AMG solvers are implemented as oomph-lib LinearSolvers
(not IterativeLinearSolvers!)
so the interfaces for the specification of preconditioners etc. differ from those for oomph-lib's own
IterativeLinearSolvers.
The HypreSolver is set like any other LinearSolver:
// Create a new Hypre linear solver
HypreSolver* hypre_linear_solver_pt = new HypreSolver;
// Set the linear solver for problem
problem.linear_solver_pt() = hypre_linear_solver_pt;

The actual solver used by the HypreSolver is specified by passing an enumerated flag (defined as static member
data in the HypreSolver class) to the solver. For instance, Hypre's AMG, CG, GMRES and BiCGStab solvers
are selected with

hypre_linear_solver_pt->hypre_method() = HypreSolver::BoomerAMG;

or
hypre_linear_solver_pt->hypre_method() = HypreSolver::CG;

or
hypre_linear_solver_pt->hypre_method() = HypreSolver::GMRES;

or
hypre_linear_solver_pt->hypre_method() = HypreSolver::BiCGStab;

respectively.
These Krylov subspace methods may then be preconditioned by Hypre's own (internal) preconditioners, again by
specifying the method via an enumerated flag. So, to use no preconditioning, or to precondition with BoomerAMG
(and AMG-based preconditioner), Euclid (an ILU preconditioner) or ParaSails (a sparse approximate inverse
preconditioner), set:

hypre_linear_solver_pt->internal_preconditioner()=HypreSolver::None;

or
hypre_linear_solver_pt->internal_preconditioner()=HypreSolver::BoomerAMG;

or
hypre_linear_solver_pt->internal_preconditioner()=HypreSolver::Euclid;

or
hypre_linear_solver_pt->internal_preconditioner()=HypreSolver::ParaSails;

respectively.
Hypre preconditioners
oomph-lib provides wrappers to Hypre's preconditioners that allows them to be used as oomph-lib
Preconditioners that may be used with oomph-lib's own IterativeLinearSolvers. Here is
an example that shows how to build an instance of oomph-lib's BiCGStab and to use the Hypre←↩

Preconditioner as the preconditioner:
// Build and instance of BiCGStab and pass it to the problem
oomph_linear_solver_pt = new BiCGStab<CRDoubleMatrix>;
problem.linear_solver_pt() = oomph_linear_solver_pt;

Now we build an instance of a HyprePreconditioner
// Create a new Hypre preconditioner
HyprePreconditioner* hypre_preconditioner_pt = new HyprePreconditioner;

and set it as the Preconditioner for oomph-lib's BiCGStab solver:
oomph_linear_solver_pt->preconditioner_pt()=hypre_preconditioner_pt;

The actual preconditioning methodology to be used by the HyprePreconditioner is again selected via enu-
merated flags, i.e.

hypre_preconditioner_pt->hypre_method() = HyprePreconditioner::BoomerAMG;

Generated by Doxygen

https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
../../../demo_drivers/linear_solvers/HypreSolver_test.cc


6 Linear solvers

or
hypre_preconditioner_pt->hypre_method() = HyprePreconditioner::Euclid;

or
hypre_preconditioner_pt->hypre_method() = HyprePreconditioner::ParaSails;

1.4 Problem-specific preconditioners

In addition to "general-purpose" preconditioners like ILU, oomph-lib provides a number of problem-specific pre-
conditioners which are typically based on the library's block preconditioning framework. Separate documentation is
available for these:

• We provide a (very!) detailed discussion of oomph-lib's block preconditioning
framework.

• Another tutorial discusses oomph-lib's "general purpose" block preconditioners.

• The NavierStokesSchurComplementPreconditioner for Navier-Stokes problems is described in its own
tutorial.

• The FSIPreconditioner for monolithically-discretised fluid-structure interaction problems is described in its
own tutorial

• We provide a preconditioner for large-displacement solid mechanics problems
in which boundary displacements are prescribed.

• The previous preconditioner is mainly used as a subsidiary block preconditioner for the solution
of fluid-structure interaction problems with (pseudo-)solid fluid mesh
updates.

1.5 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../mpi/block_preconditioners/html/index.html
../../mpi/block_preconditioners/html/index.html
../../mpi/distributed_general_purpose_block_preconditioners/html/index.html
../../preconditioners/lsc_navier_stokes/html/index.html
../../preconditioners/lsc_navier_stokes/html/index.html
../../preconditioners/fsi/html/index.html
../../preconditioners/fsi/html/index.html
../../preconditioners/prescribed_displ_lagr_mult/html/index.html
../../preconditioners/prescribed_displ_lagr_mult/html/index.html
../../preconditioners/pseudo_solid_fsi/html/index.html
../../preconditioners/pseudo_solid_fsi/html/index.html
../../preconditioners/pseudo_solid_fsi/html/index.html

	1 Linear solvers
	1.1 Overview
	1.2 List of available linear solvers
	1.3 How to change the LinearSolver
	1.3.1 Direct solvers
	1.3.2 Iterative linear solvers and preconditioners
	1.3.3 Third-party iterative linear solvers and preconditioners
	1.3.3.1 Trilinos
	1.3.3.2 Hypre


	1.4 Problem-specific preconditioners
	1.5 PDF file


